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Lattice Monte Carlo calculations for unitary fermions in a harmonic trap
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We present a lattice Monte Carlo approach developed for studying large numbers of strongly interacting
nonrelativistic fermions and apply it to a dilute gas of unitary fermions confined to a harmonic trap. In place
of importance sampling, our approach makes use of high statistics, an improved action, and recently proposed
statistical techniques. We show how improvement of the lattice action can remove discretization and finite volume
errors systematically. For N = 3 unitary fermions in a box, our errors in the energy scale as the inverse lattice
volume, and we reproduce a previous high-precision benchmark calculation to within our 0.3% uncertainty; as
additional benchmarks we reproduce precision calculations of N = 3, . . . ,6 unitary fermions in a harmonic trap to
within our ∼1% uncertainty. We then use this action to determine the ground-state energies of up to 70 unpolarized
fermions trapped in a harmonic potential on a lattice as large as 643 × 72. In contrast to variational calculations,
we find evidence for persistent deviations from the thermodynamic limit for the range of N considered.
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I. INTRODUCTION

Developing a predictive understanding of strongly inter-
acting many-body systems is one of the most difficult and
potentially rewarding challenges in physics. A paradigm for
this problem in perhaps its purest form is to determine the
behavior of a gas of unitary fermions (for a brief overview, see
Ref. [1]). These are nonrelativistic fermions with zero range
interactions tuned such that the two-body s-wave scattering
length diverges. Thus, the s-wave phase shift satisfies δ(k) =
π/2 for all k and the field theory describing the many-body
system is at a conformal fixed point;1 in 1998 it was suggested
that unitary fermions could serve as the starting point for an
effective field theory expansion for nuclear physics [2,3]. Since
then the unitary fermion gas has been created and studied ex-
perimentally by trapping atoms tuned to a Feshbach resonance
by means of an applied magnetic field, exhibiting collective
effects interpolating between the well understood phenomena
of BCS pairing and Bose-Einstein condensation [4–13]. The
nonperturbative nature of the strongly coupled interaction
between unitary fermions poses a nontrivial challenge for
theory, and numerical simulation has played an essential
role in making progress. A large body of recent theoretical
work exists for unitary fermions, both analytical [14–20] and
numerical [21–43].
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1Since the underlying theory is conformal, at nonzero chemical

potential μ and h̄ = 1, all dimensionful quantities, such as the ground-
state energy and pairing gap �, are given as pure numbers times
the function of μ and the fermion mass M combined to give the
corresponding dimension.

In this paper, we describe a lattice approach for simulating
unitary fermions, and determine the ground state energies for
up to 70 unitary fermions in a harmonic trap on lattices as
large as 643 × 72, allowing for an extrapolation to the infinite
volume limit. This significantly extends preliminary findings
published in the Lattice 2010 conference proceedings [44–46],
building on the lattice construction of Ref. [47]. In addition, for
this work we have made several improvements, including the
use of a Galilean-invariant interaction2 for tuning to unitarity
and reducing time discretization errors in the implementation
of the harmonic oscillator; these are outlined in Sec. II.

Our approach differs from previous numerical studies in
several ways:

(i) The theory is defined on a four-dimensional Euclidian
lattice, and fermion-fermion interactions are induced by an
auxiliary scalar field φ. We compute N -fermion correlators
in the background φ field, then average observables over an
ensemble of these fields—in much the same way one computes
the hadron spectrum in lattice QCD. Unlike some approaches
[41–43], our computation is not variational in nature, and so
our result for the ground-state energy does not depend on
an accurate parametrization of the many-body ground-state
wavefunction. In practice, however, using good sources and
sinks for the correlators is necessary to achieve this goal,
blurring the boundary between unconstrained and variational
calculations when N is large.

(ii) We formulate the lattice action in such a way that the
fermion determinant is independent of the auxiliary field φ so
that the so-called “quenched approximation” is exact, greatly

2By Galilean invariant, we mean that the interaction is only a func-
tion of the transferred three-momentum between interacting particles,
although that momentum is necessarily discrete and periodic on the
finite volume lattice. Momentum-dependent separable interactions,
for example, would not be Galilean invariant.
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simplifying the computation. This requires open boundary
conditions in the temporal direction, and we can therefore
only study properties at zero temperature.

(iii) We do not use importance sampling (that is, we do not
include the correlator we are trying to compute as part of the
measure for φ). Instead, our φ ensemble consists of random
Z2 valued variables living on the time-like lattice links, and
therefore is extremely cheap to generate (see Ref. [44] for a
detailed discussion of the scaling of our algorithm with volume
and number of fermions). The price we pay is that we face a
serious distribution overlap problem that cannot be overcome
simply by increasing statistics.3

(iv) The distribution overlap problem is identified as arising
from heavy-tailed distributions for our correlators, similar to
what is seen for conductance electrons in disordered media
near the Anderson localization transition. We have developed
a statistical method for greatly ameliorating the problem, as
discussed in a separate paper (Ref. [48]).

(v) We use a greatly improved lattice action that exactly
reproduces single-particle dispersion relations up to a mo-
mentum cutoff related to the inverse lattice spacing as well
as the first several two-particle energy levels in a box with
zero lattice spacing. We show that the volume dependence we
find for the energies of two-body states are consistent with
fermions having the first four or five terms in the effective
range expansion tuned to zero. Thus, our fermions are much
closer to the unitarity limit than have ever been studied before
for N > 3 particles, and as a result we have small discretization
errors and do not have to extrapolate our results to zero range,
as do most simulations.

We have formulated this theory both for unitary fermions
in a box (“untrapped”) or in a harmonic potential (“trapped”).
In this paper, we will present only the results for trapped
fermions, leaving the untrapped results for future publication
[49], although we use results for two and three untrapped
fermions to help establish the validity of our method.

The organization of this paper is as follows. In Sec. II
we describe the theoretical details of our lattice construction,
including notational conventions, lattice parameter tuning
methods, and an analysis of discretization errors. In Sec. III
we present ensemble details and measurement results for the
ground-state energies of up to 70 unpolarized unitary fermions
confined to a harmonic trap. We conclude in Sec. IV with
a summary of results and a discussion of possible future
applications of our lattice construction. More technical details
are provided in appendices: Appendix A gives details about
tuning the lattice interaction; Appendix B describes how
we construct our multifermion correlators, which incorporate
pairing correlations; Appendix C explains our strategy for
extracting accurate estimates of the multifermion energies

3Due to an unfortunate choice of nomenclature, the “overlap
problem” commonly refers to one of two unrelated problems, both
of which concern us here. The first is the poor overlap between the
true ground state and the choice of interpolating operators, whereas
the latter is the poor overlap between the path-integral probability
measure and the dominant part of the operator being estimated. We
will refer to the former as a “interpolating operator overlap problem”
and the latter as a “distribution overlap problem.”

using cumulant expansion techniques of Ref. [48]; Appendix D
provides details of our simulation, including various numerical
checks performed in order to verify the correctness of our code.

II. LATTICE CONSTRUCTION

A. Action, notation, and conventions

The starting point for our construction is a highly improved
variant of the nonrelativistic Euclidean-time lattice action
proposed in Ref. [47]:

S = bτb
3
s

∑
τ,x

[
ψ̄x,τ (∂τψ)x,τ − 1

2M
ψ̄x,τ (∇2ψ)x,τ

+ (
√

Cφ)x,τ ψ̄x,τψx,τ−1

]
. (1)

This action describes two species of one-component interact-
ing fermions ψ = (ψ↑,ψ↓) with equal mass M defined on a
T × L3 lattice, with the temporal and spatial lattice spacings
given by bτ and bs , respectively. For convenience, we work
primarily in lattice units, where bs = bτ = 1; however, in some
sections we restore the lattice spacings in order to discuss
temporal and spatial discretization errors. Throughout this
work, we consider a lattice with open boundary conditions in
the time direction with time labeled by integers τ ∈ [0,T − 1],
and periodic boundary conditions in the spatial directions
with position labeled by integers xj ∈ [−L/2,L/2 − 1], for
j = 1,2,3. As a result of using open temporal boundary
conditions, the utility of our lattice action is limited to studies
at zero temperature. In addition, this choice of boundary
conditions forbids the introduction of a chemical potential
and we work in the canonical, rather than grand-canonical
ensemble.

The derivative operator ∂τ appearing in Eq. (1) represents a
backward difference operator in time, i.e., (∂τψ)x,τ = ψx,τ −
ψx,τ−1, whereas ∇2 represents a lattice gradient operator
defined so as to give a perfect continuum-like single-particle
dispersion relation for free fermions. This kinetic term is highly
nonlocal, although as will be described below, the nonlocality
poses no challenge in a numerical simulation of Eq. (1).

A four-fermion contact interaction is achieved via the in-
troduction of a stochastic auxiliary scalar field φx,τ associated
with the time-like links of the lattice. This field is chosen to
satisfy the conditions

〈φx,τ 〉 = 0 , 〈φx,τ φx′,τ ′ 〉 = δx,x′δτ,τ ′ , (2)

where the expectation value represents ensemble averaging
over φ, and in this work the φ distribution is taken to either
be unit-variance Gaussian or Z2. The point-split character of
the interaction ensures that scattering propagates fermions
forward in time by one unit. This choice, along with the
absence of fermion propagation in the negative temporal
direction and open boundary conditions in time, ensures that
no closed fermion loop depends on φ. A consequence is that
the fermion determinant is φ-independent and has no effect on
the measure for φ, greatly simplifying numerical simulation
of Eq. (1).

The operator Cxx′ = C(x − x′) acts only in space and is
taken to be real, symmetric, local, and invariant under lattice
translations; it can be thought of as a differential operator
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acting on φ, which allows the interaction between fermions
induced by φ exchange to depend on the transfer momentum.
Not only does this give us a momentum-dependent interaction
we can tune to attain unitarity, but it is also Galilean invariant in
that it depends only on the difference between the ingoing and
outgoing fermion momenta. This is important, since tuning
a non-Galilean invariant interaction to give unitarity in one
frame would lead to nonunitary fermions in another, and
boosted pairs of particles would see an interaction which did

not correspond to unitarity. Integrating out the auxiliary field
φ yields the four-fermion interaction

(
√

Cφ)x,τ (ψ̄ψ)x,τ → (ψ̄ψ)x,τ (Cψ̄ψ)x,τ , (3)

where (ψ̄ψ)x,τ = ψ̄x,τψx,τ−1, and we have used the Hermitic-
ity of C. We may express Eq. (1) succinctly as S = ψ̄Kψ ,
where the time components of the fermion matrix K are given
in block-matrix form by:

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

D −X(T − 1) 0 0 . . . 0
0 D −X(T − 2) 0 . . . 0
0 0 D −X(T − 3) . . . 0
0 0 0 D . . . 0
...

...
...

...
. . . −X(0)

0 0 0 0 . . . D

⎞
⎟⎟⎟⎟⎟⎟⎠ , (4)

with

D = 1 − ∇2

2M
, X(τ ) = 1 −

√
C	(τ ) . (5)

Note that the L3 × L3 matrices D, X, C, and 	(τ ) act only
in space and that 	(τ ) is a diagonal matrix with statistically
independent random elements φx(τ ).

We choose to realize the lattice Laplacian in such a way
that D has the following form in momentum space (Ref. [27]):

Dpp′ = δp,p′ ×
{

ep2/(2M) |p| < 


∞ |p| � 

, (6)

where pj = 2πmj/L for integers mj ∈ [−L/2,L/2 − 1] and
j = 1,2,3. The parameter 
 = π × (1 − 10−5) is a hard
momentum cutoff imposed on the fermions; a small shift away
from π has been introduced in the cutoff in order to avoid
inclusion of momenta lying on the very edge of the Brillouin
zone (BZ). For free fermions, X = 1 and the propagator is just
a transfer matrix, which in momentum space has the form[

K−1
free(0,τ )

]
pp′ = [D−τ ]pp′ ≡ δp,p′e−E(p)τ θ (
 − |p|) (7)

and yields the exact one-particle energy, E(p) = p2/2M . So
we see that the choice Eq. (6) is designed to give the exact one-
particle dispersion relation up to a momentum cutoff |p| = 
,
beyond which the fermions do not propagate. Imposing the 


cutoff just within the Brillouin zone boundary was necessary
to reconcile the exact continuum dispersion relation with the
periodicity of the reciprocal lattice.

For the interaction we take in momentum space

Cpp′ = δp,p′ ×
{

C(p) |p| < 


C(
) |p| � 

, (8)

where below 
, C(p) is an analytic function of p2, which we
adjust to construct the desired continuum phase shift for two-
particle scattering (for example, the constant δ = π/2 phase
shift for unitary fermions). How we tune C is discussed in
Secs. II B and II C.

In order to simulate the partition function defined by Eq. (1),
it is necessary to first integrate out the fermionic degrees
of freedom, yielding an effective action involving only the
auxiliary field. The resulting partition function is given by

Z =
∫

[dφ]ρ(φ) det K, (9)

where

ρ(φ) =
{∏

x e− 1
2 φ2

x , Gaussian∏
x(δφx,1 + δφx,−1), Z2

(10)

The corresponding expectation value of an arbitrary operator
O(ψ,ψ̄) is given by

〈O(ψ,ψ̄)〉 = 1

Z

∫
[dφ]ρ(φ) det K Õ(K−1), (11)

where Õ(K−1) is some new calculable operator that depends
implicitly on φ through the propagator K−1. Both O and Õ
may have explicit dependence on φ as well. Since K is an upper
triangular block matrix, its determinant is given by the product
of determinants of its diagonal blocks, det K = (det D)T ,
which is independent of the auxiliary field. Therefore, the
full numerical simulation of the partition function with action
given in Eq. (1) is equivalent to a quenched simulation, with
expectation values given by:

〈O(ψ,ψ̄)〉 = 1

Zquenched

∫
[dφ]ρ(φ)Õ(K−1) , (12)

where Zquenched = ∫
[dφ]ρ(φ) is the quenched partition func-

tion. Note that the absence of a nontrivial probability measure
for the auxiliary field ensures that the path integral is free of
the sign problem.

Because K is upper triangular in form, interacting fermion
propagators measured from time slice zero to time slice τ may
be expressed exactly as a sequence of applications of D−1 and
X operators, resulting in a simple recursive formula:

K−1(τ ; 0) = D−1X(τ − 1)K−1(τ − 1; 0), (13)
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with K−1(0; 0) = D−1. The form of this result is evident from
the fact that there are no time-like closed fermion loops,
which is a consequence of using open boundary conditions
and from the absence of antiparticles in the nonrelativistic
theory. Inversion of the nonlocal D operator and application
of the X(τ ) operator may be performed efficiently with fast
Fourier transforms (FFTs); it is this feature that allows us to
use the perfect dispersion relation and momentum-dependent
interaction defined in Eqs. (6) and (8).

B. Transfer matrix formalism

Multifermion correlation functions C(τ ) are obtained from
an ensemble average of direct products of propagators

K−1(τ ; 0) = K−1(τ ; 0) ⊗ · · · ⊗ K−1(τ ; 0)︸ ︷︷ ︸
N

, (14)

which are sandwiched between properly antisymmetrized
N -fermion initial and final states (i.e., interpolating fields
associated with time slices zero and τ , respectively). We
will refer to the initial and final states as sources and sinks,
respectively. We may translate our lattice action in Eq. (1) into
Hamiltonian language by noting that the expectation value of
K−1(τ ; 0) is just the Euclidean time evolution operator for a
system of N particles. Since the single-particle propagator
K−1 is itself a product of uncorrelated random matrices
(because the auxiliary field probability measure is separable in
time), the multifermion correlation function will factor into a
matrix product of ensemble averages. If we define the matrix:

T = D−1/2(1 − V)D−1/2, (15)

where

D = D ⊗ · · · ⊗ D︸ ︷︷ ︸
N

, (16)

and

(1 − V) = 〈X(τ ) ⊗ · · · ⊗ X(τ )〉︸ ︷︷ ︸
N

, for every τ (17)

are V N dimensional matrices, then the N -fermion correlator
may be written in the highly suggestive form:

〈K−1(τ ; 0)〉 = D−1/2(T )τD−1/2, (18)

and we may identify T as a transfer matrix and H = − ln T
as a Hamiltonian for the N -fermion system, provided T is
Hermitian and positive.4

A general expression for the multiparticle interaction V
may be computed analytically from Eqs. (5) and (17) by
explicit integration of the auxiliary fields. The expression is
somewhat complicated for large numbers of particles and will
therefore not be explicitly derived here. Observe, however, that
although the auxiliary field interaction X(τ ) involves a square
root of the operator C, the multiparticle interactionV is, in fact,

4This is a stronger condition than necessary; if T is Hermitian but
not positive, then T T = T †T is Hermitian and positive, guaranteeing
that a sensible definition of the Hamiltonian will exist with a time
step of 2bτ .

an analytic function of momenta. This is due to the presence of
momentum conserving delta functions, which ensure that

√
C

always comes in pairs; in terms of Feynman diagrams, there
are identical factors of

√
C at each end of the φ propagator,

only depending on the magnitude of the momentum flowing
through that propagator. This property is generally true for any
N -particle system, since only an even number of insertions of
the interaction survive integration over the auxiliary fields; it
is also evident from the right-hand-side of Eq. (3).

In the case of two fermions, where N↓ = N↑ = 1, the
transfer matrix defined by Eq. (15) may be evaluated in
momentum space and is given by

〈q↓q↑|T |p↓p↑〉

= δq↓,p↓δq↑,p↑ + 1
L3 C(p↓ − q↓)δq↓+q↑,p↓+p↑

e(q↓2+q↑2+p↓2+p↑2)/(4M)
, (19)

for momenta below the cutoff 
. C(p) is a periodic function
of the operator p for |p| < 
, which we choose to expand in a
convenient basis of local functions:

C(p) = 4π

M

NO−1∑
n=0

C2nO2n(p), (20)

with unknown coefficients C2n to be determined from scatter-
ing data. Our choice of basis functions is:

O2n(p) = Mn
0 ×

{(
1 − e−p2/M0

)n |p| � 
,(
1 − e−
2/M0

)n |p| > 

, (21)

for p within the first Brillouin zone and periodic from one
Brillouin zone to the next. The basis functions behave as
O2n(p) ≈ p2n for small p2 � M0 and tend to a constant for
p2 > M0; this basis was chosen to approximate continuum
2-body contact interactions with 2n derivatives for low transfer
momentum, while not getting excessively big for momenta at
the edge of the Brillouin zone. Throughout this work, we take
M0 = M , and both to be O(1) in lattice units.

In the special case where NO = 1 the only operator in the
sum Eq. (20) is O0, which is constant, and the two-fermion
transfer matrix may be diagonalized analytically on the finite
volume lattice. All nonzero total momentum eigenstates of
Eq. (19) correspond to plane waves, whereas the zero total
momentum eigenstates are given by

〈p↓p↑|k〉 ∝ ep2/2M

e−Ek+p2/M − 1
δp↓+p↑,0, (22)

where p = |p↓| = |p↑|. The corresponding energy eigenval-
ues Ek are given by solutions to the integral equation

M

4π

1

C0
= 1

L3

∑
p<


1

e−E+p2/M − 1
, (23)

which, for every value of p2, admits a single bound state for
any value of C0 > 0 at finite volume. This negative energy
state becomes a scattering state in the infinite volume limit for
0 < C0 < Ccrit and a bound state for Ccrit < C0, where Ccrit

is an M-dependent critical value; tuning C0 → Ccrit yields a
zero energy bound state at infinite volume, corresponding to
unitarity and the continuum limit of the lattice theory.
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In the case where NO > 1, even semi-analytic solutions
for the C2n coefficients are not feasible, but they may be
determined numerically by explicit diagonalization of Eq. (19).
It is helpful to restrict the transfer matrix to the zero center-
of-momentum subspace, thus reducing the dimensionality of
the matrix from L6 down to a more manageable size of L3.
A further reduction in the dimensionality of Eq. (19) may
be achieved by projecting the zero center-of-momentum part
of the transfer matrix onto appropriate representations of the
octahedral group Oh (e.g., in the case of s-wave scattering, the
trivial representation A+

1 ). Performing such a projection makes
numerical diagonalization feasible for lattices at least as large
as L = 64, which is the maximum lattice size we consider in
our numerical studies.

C. Parameter tuning

Unitary fermions in the continuum are a conformal system,
while a lattice simulation necessarily involves finite lattice
spacing and volume, both breaking conformal symmetry.
Critical to a numerical simulation is the ability to tune the
interactions to unitarity and control the systematic errors.
In contrast to chiral symmetry in lattice QCD, for example,
there is no phase transition associated with unitarity, despite
the enhanced symmetry, and so there is no general feature
in the N -body spectrum that allows one to easily evaluate
how far one is from unitarity. It is important therefore to
collect as many results as possible about unitary fermions
in the continuum that are known exactly or to high numerical
precision in order to facilitate the tuning of the lattice action
and to control systematic errors.

What is known exactly about unitary fermions in the
continuum is (i) the spectrum of two unitary fermions in a box
of size L [50–53]; (ii) the spectrum of two and three unitary
fermions in a harmonic trap [18]; (iii) the scaling dimension
of local composite operators involving unitary fermions.5 Not
known exactly but determined to high numerical accuracy are
(iv) the few lowest energy levels for three unitary fermions in
a box, extrapolated from a lattice Hamiltonian diagonalization
very close to the continuum limit, with lattice size up to
L = 50 [29]; and (v) the ground-state energies for 4, 5, 6
unitary fermions in a harmonic trap, obtained by solving the
Schrödinger equation [57]. The ground-state energy for N = 4
fermions in a box has also recently been precisely studied by
several methods in Ref. [37], but involves extrapolation to the
continuum from very small lattices, L � 8, which makes the
evaluation of potential systematic errors difficult.

Our strategy for utilizing this information to tune our lattice
action and estimate the size of systematic errors is to adjust
our C2n coefficients to correctly reproduce the low-lying two-
particle spectrum in a box in the continuum, subsequently
showing that we can reproduce the correct volume scaling
relations of measured energies, as well as the precisely known
ground-state energies for three fermions in a box or 3–6 trapped

5The scaling of two-body operators was determined in Refs. [2,3]
(see also [54]); the scaling of low dimension three-body operators
was first analyzed by Griesshammer [55,56], and a beautiful general
analysis was subsequently supplied by Nishida and Son [17].
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FIG. 1. (Color online) A plot of the three-dimensional ζ -function
S(η).

fermions. Here we discuss the tuning and energy levels of two
and three untrapped fermions; our results for few-body trapped
fermions are discussed in Sec. III

1. Tuning and scaling of low-lying two-body untrapped
energy levels

The two-particle energies E for s-wave particle pairs in a
box with zero net momentum and phase shift δ0 are given by
the solutions to

p cot δ0 = 1

πL
S(η), S(η) = lim


→∞

[ ∑
|j|<


1

j2 − η
− 4π


]
,

(24)

where j is an integer three-vector, η = (pL/2π )2, and p is
related to the energy by E = p2/M [50–53]. If scattering is
due to short-range interactions, then pcot δ0 is analytic in p2 at
sufficiently low p and one has the effective range expansion,

p cot δ0 = −1

a
+ 1

2
r0p

2 + r1p
4 . . . , (25)

where a is the scattering length, r0 is the effective range,
and r1, with dimension of volume, is what we will call the
shape parameter. By means of Eq. (24), knowledge of the
energy eigenvalues for the low-lying two-particle modes in
a box can be used to determine effective range expansion
parameters. Conversely, given a target set of effective range
expansion parameters, we can tune our operator coefficients
C2n in Eq. (20) of our lattice theory until we attain the correct
low-lying energy eigenvalues. This general tuning procedure
was introduced in Ref. [58]. For unitary fermions in the
continuum, we set pcot δ0 = 0 on the left-hand side of Eq. (24)
and find the solutions η∗

k to the equation S(η∗
k ) = 0. The

function S(η) is shown in Fig. 1, and the roots η∗
k correspond

to the points where the function crosses the η axis. The first
27 solutions are listed in Table I.6

On the lattice, the energy eigenvalues are defined from λ =
e−bτ E , where λ are the eigenvalues of the two-particle transfer

6To compute the η∗
k it is very helpful to recognize that the number

of integer three vectors j with equal norm is given by the coefficient
of x |j|2 in the Taylor expansion of [θ3(0,x)]3, where θ3(u,x) is one of
the Jacobi theta functions.
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TABLE I. First 27 roots η∗
k (k = 1, . . . ,27) of S(η).

k η∗
k k η∗

k k η∗
k k η∗

k

1 −0.095 900 7 8 7.196 263 3 15 15.353 737 6 22 23.019 472 9
2 0.472 894 3 9 8.287 953 7 16 16.121 825 4 23 24.330 621 0
3 1.441 591 3 10 9.534 531 5 17 17.532 541 6 24 25.301 612 9
4 2.627 007 6 11 10.550 534 1 18 18.605 393 2 25 26.680 360 1
5 3.536 620 0 12 11.701 495 8 19 19.518 639 4 26 27.878 002 0
6 4.251 706 0 13 12.310 239 2 20 20.403 318 7 27 29.615 651 1
7 5.537 700 8 14 13.383 115 2 21 21.694 417 9

matrix discussed above and bτ is the temporal lattice spacing.
Spatial discretization effects make it impossible to exactly
reproduce the continuum η∗

k on the lattice. For one thing, there
are an infinite number of η∗

k , while the lattice transfer matrix
has only a finite number of eigenvalues. Furthermore, since
the lattice restricts how easily fermions can get close to each
other—effectively creating a repulsive interaction—the phase
shift for lattice unitary fermions necessarily falls below π/2 for
large lattice momenta, and pcot δ0 as computed from Eq. (24)
gets large. So the best one can do is tune a number NO of
the C2n coefficients to reproduce the lowest NO solutions η∗

k .
Details of how this tuning was performed numerically are
provided in Appendix A. In Table II, we give as an example
the results for tuning operators for an L = 32 lattice with mass
M = 5.

Once we have tuned the C2n operator coefficients, we can
compute all eigenvalues of the two-particle transfer matrix
relevant for continuum s-wave scattering and use Eq. (24) to
determine pcot δ0. Figure 2 shows the result of this exercise for
the successive tunings of Table II. In the left panel, we show
that pcot δ0 � 1 over a wide range of momenta, extending
well beyond that of the �4 lowest eigenvalues we used to tune
the C2n.

Having pcot δ0 look progressively flatter with each tuning
is only a qualitative indication that we are attaining unitarity
with improvement at each order. It is not advisable to
try to fit this curve with a polynomial to extract effective
range expansion coefficients; the reason is that the lattice
function is only defined at discrete points, and one expects a
finite—but unknown—radius of convergence for the effective
range expansion. As a result it is possible to extract wildly
different effective range coefficients from a polynomial fit,
depending on the order of the fit and its momentum range.
The situation is clarified in the right panel of Fig. 2, which
plots pcot δ0 on a ln-ln plot. This plot shows clear evidence
that with each successive tuning we are setting successive

TABLE II. Results for tuning NO C2n coefficients for an L = 32,
M = 5 lattice. Uncertainties in the coefficients reflect a numerical
uncertainty in η∗

k at O(10−7).

NO C0 C2 C4 C6

1 0.681 534 6(1) – – –
2 0.466 516(2) 0.085 600 7(8) – –
3 0.489 085(8) 0.008 53(2) 0.020 778(6) –
4 0.501 42(5) 0.009 58(3) 0.003 50(8) 0.004 30(2)

terms in the effective range expansion to zero. Furthermore,
the convergence of the dashed lines in the plot at η ∼ 30
demonstrates that the radius of convergence for the effective
range expansion is η ∼ 30, with deviations of the plotted points
from the dashed lines indicating significant breakdown of the
expansion at η � 15, or |p| ∼ 0.76/bs . Note that for free
fermions, η is an integer that denotes the energy shell, and
that a degenerate fermi gas filled to the η = 15 shell would
contain 251 fermions of each spin, far above the number of
fermions we actually are able to study.7

Another way to see if the tuning procedure is successful is to
look at the L-dependence of the low-lying energy eigenmodes
on the lattice. Assume that we have tuned pcot δ0 so that the
leading term in the effective range expansion is

πLpcot δ0 ∼ πLrn−1p
2n = 1

2 (2π )2n+1L1−2nrn−1η
n, (26)

where rn−1 has dimensions (length)2n−1, and that ηk are the
solutions to S(η) = πLpcot δ0, while as before, the η∗

k are
the unitary limit solutions to S(η) = 0. For sufficiently small
ηk − η∗

k , we have S(ηk) � ck(ηk − η∗
k ), where ck are the slopes

of S where it intersects the η axis in Fig. 1. Thus, we find

1
2 (2π )2n+1L1−2nrn−1(η∗

k )n � ck(ηk − η∗
k ) (27)

or

L

(
ηk

η∗
k

− 1

)
� (2π )2n+1rn−1

2ck

(η∗
k )n−1 L2−2n. (28)

Thus, the prediction is that a plot of L( ηk

η∗
k

− 1) should scale

like L−(2n−2) when n terms in the effective range expansion
have been tuned away. Note that because of the L−2n factor
in the above equation, the effects of a small residual term at
lower order in the effective range expansion will dominate
at sufficiently large L. We have computed the low-lying
energy eigenvalues for two particles on lattices of a number of
different sizes, and in Fig. 3 we plot the results for energy
levels η5 and η9, both at higher shells than were used in
our tuning procedure. The scaling of Eq. (28) is evident
in these plots: at each successive tuning we see that the
L-dependence is steepened by an additional factor of L−2. An
interesting exception is for η5 with four parameters tuned and
L � 22; there we see points flattening out to perhaps an L−2

7The scattered behavior of the lowest η points in the right panel of
Fig. 2 seem to indicate the difficulties with our procedure when we
attempt to tune too many C2n parameters.
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FIG. 2. (Color online) Left: pcot δ0 as computed from exact lattice two-particle energy eigenvalues using Lüscher’s formula, with the first
NO terms in the effective range expansion tuned to zero for NO = 1, · · · ,4. Right: Same data on a ln-ln plot along with expected η scaling
(dashed lines) for various NO. Data is from an L = 32 and M = 5 lattice.

slope, suggesting that a small residual shape parameter r1 is
beginning to dominate at that point. We can use this deviation,
Eq. (28), the value of η∗

5 from Table I, and a calculation that
gives c5 � 96 to estimate an upper bound on the residual shape
parameter, r1 � 10−3 in lattice units.

2. Three-body untrapped ground-state energy

As a nontrivial test of the precision of our lattice method,
we have computed the lowest energy of three unitary fermions
in a zero-total-momentum eigenstate; the energies of this state
and higher eigenstates were computed to high accuracy by
Pricoupenko and Castin [29]. We performed the calculation
for lattice sizes L = 8,10,12,14,16, tuning the coefficients
of four O2n operators for the L = 8 lattice, and five for the
other lattices; for each lattice we used 1.5 − 1.9 × 108 scalar
configurations. With a perfect one-body dispersion relation
and this many two-body s-wave operators tuned, the leading
L dependence of our result for the N = 3 energy will be
due to the untuned two-derivative two-body p-wave operator
at O(L−3); subleading scaling would be due to the lowest
dimension three-body operator, scaling as L−4.72, followed by
the four derivative p-wave and d-wave two-body operators,
scaling as L−5; for more details see Ref. [49]. In Fig. 4
we have plotted our results versus L−3—the leading scaling
behavior expected—including combined statistical and fitting

systematic errors. Evidently the L � 10 numbers exhibit L−3

scaling nicely, while the L = 8 result is off, suggesting that
L = 8 is too small a lattice to see the asymptotic scaling
behavior. The red lines in Fig. 4 give the range of two-
parameter fits of the L � 10 data to c1 + c2/L

3, which reflects
the uncertainty in our data, while the black line is the fit of
the central values of the data using the same fit function. At
L → ∞, the energy we obtain is 0.3735+0.0014

−0.0007 in units of the
energy of three noninteracting fermions. As a result we find
that our lattice action reproduces the Pricoupenko-Castin result
to within our 0.3% uncertainty.

D. External potentials

Until now, we have concentrated on a system of interacting
nonrelativistic fermions in the absence of an external potential.
An external potential U may be introduced in a natural way
by replacing the single-particle interaction operator X defined
in Eq. (5) with

X(τ ) → e−U/2X(τ )e−U/2, (29)

where the L3 × L3 matrix U is given by Uxx′ = U (x)δx,x′ .
In the case of a harmonic trap, we use a potential of the form
U (x) = 1

2κx2 centered about x = 0, and with simple harmonic
oscillator (SHO) spring constant κ . For fermions of mass M ,
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FIG. 3. (Color online) Successful tuning of effective range parameters may be seen in the L dependence of individual energy eigenvalues
for two particles in a box. Here we see agreement with Eq. (28) for the L-dependence (in lattice units) of levels η5 and η9, which were not
tuned.
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FIG. 4. (Color online) Energy of three untrapped unitary fermions
in a zero-total-momentum eigenstate in units of the energy of
three noninteracting fermions, E

(0)
untrapped = 2 × (2π/L)2/(2M), plot-

ted versus (bs/L)3 for L/bs = 8,10,12,14,16. The error bars include
statistical and fitting systematic errors (for a discussion of these errors,
see Sec. III A). The red band represents all possible two-parameter
fits of the L/bs � 10 data to the function c1 + c2/L

3, reflecting both
statistical and fitting systematic errors in our measurements, while the
black line is the fit to the central values. The dashed line is the precise
Pricoupenko-Castin result [29], with which we agree to within our
∼0.3% uncertainty.

the characteristic trap size is given by L0 = (κM)−1/4, and the
oscillator frequency by ω = √

κ/M .
In the absence of interactions, the single fermion transfer

matrix for our lattice theory is given by

TSHO = e−p2/4M bτ e−U bτ e−p2/4M bτ , (30)

which may be recognized as Trotter’s product formula with
O(b2

τ ) time discretization errors.8 Specifically, temporal dis-
cretization errors are controlled by the dimensionless quantity
(ωbτ )2 and are eliminated in the limit that ω → 0 in lattice
units.

Finite volume errors, on the other hand, are controlled by
the dimensionless ratio L/L0. In the continuum limit, finite
volume errors for the noninteracting system may be computed
analytically, since the SHO potential is separable. A plot of the
energy dependence of the SHO on L/L0 is shown in Fig. 5 for
several low-energy single-fermion states; at large L/L0, the
energies in units of ω are just an integer plus the zero-point
energy 3/2 for a three-dimensional SHO. However, for very
small volumes, the harmonic potential plays no role and the
system is effectively a free particle in a finite box, with energies
increasing proportional to 1

2 ( 2π
L/L0

)2 with decreasing L/L0. The
dashed lines in Fig. 5 indicate this limiting behavior for several
SHO states.

When tuned interactions are turned on, both temporal and
spatial discretization errors are controlled in part by how the
couplings are chosen. As was demonstrated in the previous
section, by tuning the couplings one may completely eliminate
both sources of discretization errors in the low end of the
spectrum for two unitary fermions. Writing the transfer matrix

8The relation T (−bτ ) = T −1(bτ ) ensures that the energy can only
suffer from corrections even in bτ .
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FIG. 5. (Color online) L/L0 dependence of the SHO energies
En (n = ∑

j nj ) corresponding to the single fermion states n =
(0,0,0),(1,0,0),(1,1,0),(1,1,1),(2,1,0),(3,1,1), and (4,2,0). Solid
lines indicate an exact continuum limit calculation, whereas the
data points indicate simulation results for ω = 0.005 and L0 � 2.
Dashed lines correspond to free fermions in a finite box (small L/L0

limit).

for untrapped unitary fermions as

Tuntrapped = e−bτ p2/4M (1 − bτV)e−bτ p2/4M = e−bτH, (31)

where H is assumed to have been tuned free of discretization
errors, then the transfer matrix for unitary fermions in a
harmonic trap is given by

Ttrapped = e−bτ p2/4Me−bτ U/2(1 − bτV)e−bτ U/2e−bτ p2/4M

= e−bτ U/2−b2
τ [U/2,p2/4M]+O(b3

τ )e−bτH

×e−bτ U/2+b2
τ [U/2,p2/4M]+O(b3

τ )

= e−bτ (H+U )+O(b3
τ ), (32)

where (H + U ) is the target Hamiltonian for trapped unitary
fermions. We see that in the lattice definition of the trapped
lattice Hamiltonian, Htrapped ≡ − 1

bτ
ln Ttrapped, temporal dis-

cretization errors appear at O(b2
τ ).

As was the case for noninteracting fermions in a harmonic
trap, interacting fermions will possess spatial discretization
and finite volume errors that scale as bs/L0 and L/L0,
respectively. These errors must be explored numerically, and
will be presented in detail in Sec. III.

III. ANALYSIS AND RESULTS

In this section, we report results for the ground-state
energies of up to N = 70 unitary fermions confined to a
harmonic potential. We benchmark our method and systematic
errors for up to N = 6 against high-precision solutions to the
many-body Schrödinger equation, achieving agreement at 1%.
We believe this is the first microscopic study to explore N > 6
fermions in a trap without invoking a variational principle or
requiring costly importance sampling.

Numerical simulations of the trapped unitary Fermi gas
have been performed with two objectives in mind: evaluation of
systematic errors using known few-body (N � 6) results as a
benchmark, and numerical calculation of ground-state energies
of the many-body system (N � 70). We explore the question
of whether one can use the trapped fermion data to extract the
Bertsch parameter, defined as ξ = Euntrapped/E

(0)
untrapped, where
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E
(0)
untrapped is the energy of noninteracting, untrapped fermions.

ξ is related to the ground-state energies of trapped fermions
via the local density approximation [36]

Etrapped = E
(0)
trapped

√
ξ

[
1 − 4

√
2ξπ2

(
c1 − 9

2c2
)
(3N )−2/3

+O(N−4/3)
]
, (33)

where c1 and c2 are unknown phenomenological constants and
E

(0)
trapped is the energy of N noninteracting trapped fermions:

E
(0)
trapped = (3N )4/3

4
ω. (34)

Note that if (c1 − 9
2c2) � 1, then for N = 70 and ξ � 0.4 one

finds the subleading term in the expansion Eq. (33) to be the
same size as the leading term, suggesting that N = 70 is not
enough particles for the trapped system to be considered near
the thermodynamic limit. In fact, that is what we find: we
see significant shell structure all the way up to N = 70 and
conclude that we are not yet in the thermodynamic limit. This
is in contrast with what we find in the untrapped case, where
shell structure disappears at much lower N [49]. At N = 70,
the system has not yet reached the thermodynamic limit and we
are not able to extract the value of ξ or the unknown parameters
c1 and c2 from the trapped data. Our data does, however, give
information about possible differences in how the trapped and
untrapped systems approach the thermodynamic limit.

A. Extraction of ground state energies

The energies of multifermion systems may be extracted
from correlation functions using standard techniques. Given
a correlator C(τ ) describing the Euclidean time evolution of
some N-fermion initial state (source) at time slice zero into
some final state (sink) at time slice τ , a generalized effective
mass may be defined as

meff(τ ) = − 1

�τ
ln

[C(τ + �τ )

C(τ )

]
, (35)

which satisfies limτ→∞ meff(τ ) = E0, where E0 is the ground-
state energy of the system. At late times, energies are given by a
plateau in the effective mass, with excited-state contamination
falling off exponentially in the energy difference between
lowest and first excited states. For noisy correlators, a stride of
�τ > 1 may be used to facilitate detection of the time window
over which a plateau appears.

For large numbers of fermions, the conventional effective
mass exhibits a distribution overlap problem (see Appendix C).

For this reason, we utilize the effective mass defined using the
cumulant expansion truncated at O(Nκ ),

m
(Nκ )
eff (τ ) = − 1

�τ

Nκ∑
n=1

1

n!
[κn(τ ) − κn(τ + �τ )] , (36)

where κn(τ ) is the nth cumulant of ln[C(τ )]. Details of this
technique may be found in Appendix C, and details of the
particular strategy used for systems of trapped fermions will
be discussed in Sec. III D.

To extract the energies of the system, we perform correlated
χ2 fits to the plateau region of the effective mass associated
with the N -fermion correlator. Statistical error estimates are
obtained by resampling the data using the bootstrapping
technique. Fitting systematic errors are found by varying the
endpoints of the fitting interval. For small N � 8, contamina-
tion from excited states persists to very large Euclidean times.
Because of this, the data we fit is quite noisy and determining
the plateau region becomes difficult. For this reason, we vary
the endpoints of our fits by δτ = ±10 to account for any
systematic error due to the choice of fitting region. For large N

we find that it is sufficient to vary the endpoints of the fit region
by an amount δτ = ±2 to determine our fitting systematic
errors. Because the plateaus are well-resolved for many time
steps, we do not find significant deviations in the error bars by
considering larger variations of the endpoints.

B. Ensembles and parameters

A complete analysis of the systematic errors due to finite
volume and lattice spacing artifacts requires performing scans
in the parameters L, L0, and ω. Since performing such scans
would be prohibitively costly for large numbers of fermions,
we have instead chosen to generate two sets of ensembles that
allow us to address these questions in a cost-effective manner.

The first set of ensembles consists of a series of scans in
the aforementioned parameters, while restricting the number
of particles to values N � 6. Restricting the number of
fermions in this way greatly reduces the computational
resources required and also permits a higher resolution in the
parameter scans. Few fermion ensembles of size Nconf = 1M

were generated for L = 48 and L = 64 lattices using trap
sizes L0 = 3,4,5,6,6.5,7,7.5, and 8. Scans were primarily
performed at ω = 0.005, however, several simulations were
also performed at ω = 0.01. The temporal extent for all of the
few-body lattices was T = 80.

TABLE III. Many-fermion simulation parameters for trapped fermion using the pairing wave function given by Eq. (B6) with β = 1/(
√

2L0).

C2n (NO = 4)

L T ω L0 n = 0 n = 1 n = 2 n = 3 Nconf NB

48 60 0.005 7.5 0.556104 0.0182354 0.0023426 0.01116874 1M 200
48 60 0.005 8.0 0.582780 0.0221117 0.0016339 0.01659503 1M 200
54 60 0.005 7.5 0.554506 0.0175868 0.0074880 0.00953156 600K 200
54 60 0.005 8.0 0.581951 0.0216195 0.0053643 0.01527565 600K 200
64 60 0.005 7.5 0.555115 0.0180441 0.0049583 0.01031768 400K 200
64 60 0.005 8.0 0.582084 0.0218977 0.0041476 0.01568453 400K 200
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TABLE IV. Single-fermion sources used in trapped (α = n)
fermion calculations.

i n↑
i = n↓

i Shell Deg i n↑
i = n↓

i Shell Deg

1 (0, 0, 0) 0 1 21 (0, 0, 4) 4 15
2 (0, 0, 1) 1 3 22 (0, 1, 3)
3 (0, 1, 0) 23 (0, 2, 2)
4 (1, 0, 0) 24 (0, 3, 1)
5 (0, 0, 2) 2 6 25 (0, 4, 0)
6 (0, 1, 1) 26 (1, 0, 3)
7 (0, 2, 0) 27 (1, 1, 2)
8 (1, 0, 1) 28 (1, 2, 1)
9 (1, 1, 0) 29 (1, 3, 0)
10 (2, 0, 0) 30 (2, 0, 2)
11 (0, 0, 3) 3 10 31 (2, 1, 1)
12 (0, 1, 2) 32 (2, 2, 0)
13 (0, 2, 1) 33 (3, 0, 1)
14 (0, 3, 0) 34 (3, 1, 0)
15 (1, 0, 2) 35 (4, 0, 0)
16 (1, 1, 1)
17 (1, 2, 0)
18 (2, 0, 1)
19 (2, 1, 0)
20 (3, 0, 0)

With guidance from our analysis of the systematic errors
of the few-body system, we then performed a more targeted
set of simulations for up to N = 70 fermions, using parameter
choices L = 48,54, and 64, L0 = 7 and 8, and ω = 0.005. The
parameter choices used in our N � 70 simulations are detailed
in Table III. For our simulations of up to N = 70 fermions, we
have generated approximately one million configurations for
each value of the volume and trap size, using a total of less than
one million CPU hours. In all of the trapped fermion studies,
we have used NO = 4 tuned couplings for the interaction.

Details of our construction of multifermion correlation
functions are given in Appendix B. Following Ref. [32], we
use a modified Slater determinant Eqs. (B3) and (B4) to
include pairing correlations. The sinks are constructed from
the two-particle wave functions defined in Eq. (B6). For all
correlation functions, the free parameter appearing in Eq. (B6)
was chosen as β = 1/

√
2L0. Multifermion sources where
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FIG. 6. (Color online) Ground-state energies (in units of ω) as a
function of L0/bs at fixed L/bs = 48 for various values of N . Dashed
lines are results from Ref. [57].

constructed from free SHO single-particle wave functions |nσ
i 〉

with σ = (↓ , ↑) provided in Table IV, with i � N/2. The
sources involving odd N for our few fermion studies were
obtained by removing a single fermion from the highest shell,
as described at the end of Appendix B.

C. Few-body results

To reach the continuum and infinite volume limits we
require bs � L0 � L and bτ � 1/ω. To balance the need
for small temporal discretization errors with the computational
cost associated with the number of time steps required to reach
the ground state, we have chosen ωbτ = 0.005 for this study.
For small N , we find that the discrepancies in the energies for
ωbτ in the range 0.005−0.01 are about 0.5% and are within
our error bars.

For a given box size, the choice of L0 must take into
account both discretization errors and finite volume errors.
The expectation is that for small L0/bs spatial discretization
errors will dominate. The discretization is implemented as a
hard cutoff in momentum space, which may be interpreted
as an infinite potential at the edge of the Brillouin zone.
Sensitivity of the state to this infinite potential results in
an increase in the associated energy. Conversely, for large
L0/bs and fixed volume, finite-volume errors will dominate.
The periodic boundary conditions in space result in attractive
interactions from image particles, causing a decrease in energy.
Thus, measurement of the ground-state energies as a function
of L0/bs and L/L0 is necessary to determine at which value
we can minimize both types of error.

Figure 6 presents our findings for the ground-state energies
of N = 3,4,5, and 6 fermions, with L0/bs ranging from
3 to 8 and fixed L/bs = 48. Also indicated in this figure
are the ground-state energies for unitary fermions in a trap
quoted in Ref. [57], which were obtained by numerically
solving the multifermion Schrödinger equation using the
correlated Gaussian (CG) method. Using the results of
Ref. [57] as a benchmark, we find that for L0/bs � 7.0,
our discretization errors are significant. Above this value,
however, we find that the extracted energies are independent
of L0/bs , indicating negligible discretization errors in this
regime.9

In Fig. 7, we present the L/L0 dependence of the energies
for N = 3,4,5, and 6, with L/bs = 48 and 64 and L0 � 7.
The consistency of the results between the different volumes
indicates that finite volume errors are negligible within
statistical uncertainties for L/L0 ranging from 6 to 9. The good
agreement of our L0 � 7 data in Fig. 7 with the benchmark

9In Ref. [46], we found that our results agreed with those of Ref. [57]
for values of L0 ≈ 4. However, it became evident that this agreement
resulted from a delicate cancellation between temporal and finite
volume errors and that each source of error was individually rather
significant. In this work, we have reduced the temporal discretization
errors with an improved form of the potential; this improvement
results in temporal errors appearing at an order higher in ωbτ . We have
also chosen a smaller value for ωbτ and checked that the results are
consistent for both the smaller (ωbτ = 0.005) and larger (ωbτ = 0.01)
values.
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FIG. 7. (Color online) Fit results for the ground-state energies (in units of ω) for N � 6 as a function of L/L0 for two volumes, L = 48,64,
and three trap sizes, L0 = 7.0,7.5,8.0. The result of a correlated fit in N,τ of all data is shown as a red line, with a red band showing the
combined statistical and systematic errors. The results from Ref. [15] (N = 3) and Ref. [57] (N = 4–6) are given by dashed lines, with any
associated error bars shown by hatched regions.

energy values indicates the absence of any residual errors.
We have performed a constant correlated fit using all the
data in Fig. 7 to obtain infinite volume, vanishing lattice
spacing results for the few particle energies. Our final fit
results for N � 6 are indicated in Fig. 7, and presented along
with a comparison to an exact result for N = 3 [15] and
high-precision Hamiltonian results of Ref. [57] for N = 4−6
in Table V.

For N > 6, it is likely that both discretization and finite
volume errors will grow, since we expect the wave function
to spread out in both position and momentum space when
more particles are added to the system. Numerical evidence
suggests that extrapolations become necessary for N � 20.
More details of our analysis for larger N will be presented in
the next section.

D. Many-body results

1. Statistics

Examples of an effective mass plot obtained using the
conventional definition, Eq. (35) with �τ = 1, for N = 30
and N = 70, are shown in Fig. 8. Although we have found
good signals for most values of N at short times, at later times
the effective mass plot shows clear evidence of a distribution
overlap problem.

Generally speaking, since the sources and sinks used
to compute these correlation functions are different (see
Appendix B), positivity of the correlator is not guaranteed.
Furthermore, there is no reason to expect that effective masses
obtained from them will decrease monotonically as a function

of time. When analyzing effective mass plots, one must
therefore be capable of distinguishing between local minima
in the effective mass and true plateaus in order to extract
reliable ground-state energies. In cases like Fig. 8 (N = 30),
where a plateau begins (τ ∼ 6) well before the onset of a
distribution overlap problem (τ ∼ 22), one may easily make
the distinction between local-minima and true-ground-state
plateaus. However, in cases like Fig. 8 (N = 70), where
the onset of an overlap problem and the beginning of a
(potential) plateau coincide, the distinction becomes less
clear.

In light of the considerations above, effective mass cal-
culations based on the cumulant expansion, Eq. (36) (for
details, see Appendix C), were used to help establish and
extend plateaus into the region of poor overlap. The result
of this technique is demonstrated in Fig. 9 for N = 70
with Nκ ranging from 3 to 5. Comparing the effective mass
obtained from the cumulant expansion with that obtained by
conventional means, we see a marked reduction in the overlap

TABLE V. Results for Etrapped/ω for N � 6, including com-
bined statistical and fitting systematic errors (first row). For
comparison we give the exact N = 3 result [15] and results of
Ref. [57] (second and third rows).

3 4 5 6

This work 4.243+0.037
−0.034 5.071+0.032

−0.075 7.511+0.051
−0.091 8.339+0.080

−0.066

Exact, Ref. [15] 4.2727 – – –
From Ref. [57] 4.273(2) 5.008(1) 7.458(10) 8.358(20)
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FIG. 8. (Color online) Effective mass as a function of τ (lattice units) for N = 30 and N = 70 (L = 48, L0 = 8.0) using the conventional
definition for the effective mass Eq. (35). Fits are represented by horizontal bands.

problem for τ � 12, although the noise at late times increases
with Nκ . Nonetheless, the extension of the plateau region to
larger times gives us confidence that we have reached the
ground state and allows us to perform fits over much longer
temporal extents.

Examples of the fits obtained using the cumulant expansion
for small (N = 10), moderate (N = 30), and large (N = 70)
numbers of fermions are shown in Fig. 10. For small N , the
plateaus appear at late times where we find that the cumulant
expansion converges slowly. However, because the overlap
problem is less severe for small N versus large N , we may
corroborate our cumulant results with those obtained using
the conventional effective mass (red bands). For N = 10,
convergence occurs at Nκ ≈ 6, whereas for all N � 12,
convergence occurs at Nκ ≈ 3. Higher cumulants may be
used to further extend the plateau region without significant

growth in the error bars for the fits. This is presumably
because the fit results are highly influenced by the early time
portion of the plateau region, where the errors on the effective
mass are relatively unaffected by an increase in the number
of cumulants. The nearly exact agreement between results
obtained using N = 3,4,5 leads us to conclude that systematic
errors introduced by truncation of the cumulant expansion are
negligible.

2. Systematics

To account for systematic errors arising from finite-volume
and lattice-spacing effects, we have performed the calculation
for three volumes (L = 48,54,64) and at two values of the
trap size (L0 = 7.5,8.0). We find that as more particles
are added to the system, the discrepancies between results
at different volumes grows. The dependence on the lattice
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FIG. 9. (Color online) Effective mass as a function of τ (lattice units) for N = 70 (L = 48, L0 = 8.0) using the cumulant expansion [Eq.
(36)] for up to Nκ cumulants. The fits from each are represented by horizontal bands. The conventional effective mass is shown in gray.
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FIG. 11. (Color online) Volume dependence of the ground-state energies (in units of ω) for moderate N (N = 24). The data points indicate
the individual results for our six values of L/L0. An infinite-volume extrapolation is shown as a solid line, while a band represents the associated
statistical and fitting systematic error bars of the extrapolation. The upper plots show separate fits to the L0 = 7.5 and L0 = 8.0 points using
Eq. (37). The lower-left plot shows a combined fit using both values of L0, and the lower-right plot shows the combined fit with a final error
band obtained by combining the statistical and fitting systematic errors from all three extrapolations.

043644-13



ENDRES, KAPLAN, LEE, AND NICHOLSON PHYSICAL REVIEW A 84, 043644 (2011)

spacing is less clear, particularly due to the fact that changing
L0 changes not only the lattice-spacing dependence (bs/L0),
but also the finite-volume dependence (L0/L). To separate
these effects, an infinite-volume extrapolation was performed
for each value of L0 using correlated fits of the data to

f (L/L0) = E∞
[
1 − Ae−B(L/L0)2 ]

(37)

over the plateau regions of each effective mass plot. This form
of the extrapolation function is a simplified version of the
ansatz that finite-volume errors depend on the probability,

P(L/L0) =
∫ ∞

L

|ψ(x/L0)|2dx, (38)

that the ground-state wavefunction extends outside the box.
We also make use of the fact that for unitary fermions,
ψ(x/L0) is given asymptotically by a direct product of
noninteracting harmonic oscillator wavefunctions. We find
that including wavefunctions from higher shells results in
negligible change from the infinite-volume extrapolations
obtained using Gaussian fits. These differences may ultimately
be absorbed into the fitting coefficients A,B.

For the two different values of L0, we find that the
infinite-volume extrapolations are consistent within error bars,
indicating that spatial discretization errors are smaller than the
combined statistical, fitting systematic, and infinite-volume
extrapolation errors. For this reason, a third fit was also
performed to all six data points simultaneously (see Figs. 11,
12). The spread between the three fits gives an approximation
for any remaining spatial discretization errors. For the final
result, we added the statistical and fitting systematic errors
from each fit in quadrature individually and used the outer
envelope to represent our total statistical, fitting systematic,
extrapolation, and spatial discretization error.

3. Final results

Our results for the energies in units of ω and their
corresponding errors are reported in Table VI. In Fig. 13
we plot the results for the ground-state energies in units
of the energies for the corresponding noninteracting system,
Etrapped/E

(0)
trapped. For comparison, we also show the results from

two fixed-node calculations: a Green’s function Monte Carlo
(GFMC) approach [42] and a diffusion Monte Carlo (FN-
DMC) approach [41]. By using the fixed-node constraint along
with a variational principle, both of these methods provide
upper bounds on the ground-state energies. We find that our
energies are consistently lower than those obtained using both
of these methods. Interestingly, fixed-node calculations do not
display the shell structure, which is clearly present in our data.
It is evident that this shell structure diminishes for large N ,
where eventually the thermodynamic limit should be reached.

4. Possible additional sources of systematic error

To calculate the error bars quoted in Table VI, we have
taken into account statistical, fitting systematic, extrapolation,
and lattice errors. We note additionally that the spacing
between the energy levels associated with breathing modes
[18], 2ωbτ = 0.010, is smaller than the inverse temporal extent
of our lattice (1/T ≈ 0.017) but larger than our quoted error
bars. Furthermore, as an increasing number of particles are

added to the system, a near continuum of different angular
momentum states may result, also of O(ωbτ ).

These excited state contributions could lead to systematic
effects due to a failure to reach the ground state of the system.
If excited-state contamination is present in our results, it is
possible that the overlap of our chosen sources and sinks
(see Appendix B) with these excited states is shell dependent,
causing our results to exhibit shell dependence even if this is
not a property of the ground state. However, as noted in the
beginning of Sec. III, we do not have any reason to believe we
are near the thermodynamic limit, so it is quite conceivable
that the shell structure we observe is a physical property of
the ground state.

The energy splittings are the same size for small N as for
large N , thus we might expect that if we are able to see the
ground state within our time extent for small N , the same could
be true for large N . Because our results for small N agree with
those from benchmark calculations, we can be assured that we
have found the ground state in this case. This implies that the
wavefunction overlap with excited states is very small.

To better quantify any possible effects from excited states,
we may consider a correlation function whose long-time
behavior is dominated by two terms, the first corresponding to
the ground state, the second to a breathing mode,

C(τ ) → Z0e
−E0τ + Z1e

−(E0+2ω)τ , (39)

where Z0 and Z1 represent the overlaps between our sources
and sinks with the true ground and breathing mode states,
respectively. Recall that the signs of Z0 and Z1 need not be
positive due to the use of inequivalent sources and sinks.

For large N we typically find a plateau for time ranges
τ ∼ 5−30. If we assume equal coupling of our sources to

TABLE VI. Ground-state energies as a function of N in units of
ω. The error represents the combined statistical, fitting systematic,
finite volume, and spatial discretization errors. See Sec. III D 4 for
possible additional systematic errors.

N Etrapped/ω N Etrapped/ω

4 5.071+0.032
−0.075 38 94.34+0.33

−0.31

6 8.347+0.080
−0.066 40 100.50+0.26

−0.30

8 11.64+0.106
−0.124 42 107.98+0.24

−0.33

10 16.05+0.031
−0.069 44 115.41+0.31

−0.21

12 20.765+0.045
−0.093 46 122.94+0.36

−0.22

14 25.343+0.097
−0.081 48 130.45+0.38

−0.19

16 29.932+0.053
−0.093 50 137.98+0.39

−0.36

18 34.62+0.11
−0.08 52 145.40+0.48

−0.17

20 39.31+0.11
−0.09 54 152.97+0.46

−0.18

22 45.31+0.17
−0.10 56 160.55+0.41

−0.29

24 51.44+0.20
−0.12 58 168.16+0.42

−0.37

26 57.56+0.23
−0.13 60 175.57+0.64

−0.31

28 63.65+0.25
−0.16 62 183.16+0.53

−0.33

30 69.75+0.27
−0.12 64 190.67+0.59

−0.06

32 75.89+0.31
−0.12 66 198.19+0.64

−0.37

34 82.07+0.41
−0.31 68 205.72+0.70

−0.26

36 88.05+0.46
−0.23 70 213.26+0.68

−0.29
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FIG. 12. (Color online) Volume dependence of the ground-state energies (in units of ω) for large N (N = 70). The data points indicate the
individual results for our six values of L/L0. An infinite-volume extrapolation is shown as a solid line, while a band represents the associated
statistical and fitting systematic error bars of the extrapolation. The upper plots show separate fits to the L0 = 7.5 and L0 = 8.0 points using
Eq. (37). The lower-left plot shows a combined fit using both values of L0, and the lower-right plot shows the combined fit with a final error
band obtained by combining the statistical and fitting systematic errors from all three extrapolations.

the ground state and breathing mode (Z0 = Z1), this would
contribute to a drift in the effective mass plot of about 0.1ω

for the time range considered. This is of approximately the
same size as our statistical error bars in this region, so it is
conceivable that such a drift would not be detected.

One possible test to detect contamination from excited
states is to repeat the calculation using a source that consists
of random linear combinations of the states within each shell
from Table IV. Using Eq. (39), one may show that the shift in
the ground state energy for small ωτ is approximately

E0 + 2ω
Z1

Z0 + Z1
. (40)
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FIG. 13. (Color online) Ground-state energies of N trapped
unitary fermions in units of the corresponding energies of N trapped
noninteracting fermions as a function of N . For comparison, we show
results from GFMC [42], FN-DMC [41], and CG [57] methods.

If there is contamination from the second term and the new
source changes the overlap with the excited state by at least
O(1), this would give a shift in the effective mass plot of O(ω)
for all times considered (τ � 64).

We find that the effective mass plots produced using the
random sources agree with those for our original (“pure”)
sources for N within the first two shells (see Fig. 14). For the
third shell (Fig. 15), the effective mass for the random source
begins at higher values for both N = 20 (closed shell) and
N = 30 (half-filled shell); however, the two sources begin to
agree around τ ∼ 30.

By performing fits using the cumulant method, we find
that in fact the random source plateaus at a later time than
the pure source; results from fitting both sources at late times
(τ ∼ 30) are consistent with each other (see Fig. 16). While
the cumulant expansion converges too slowly at late times for
us to extract a reliable ground state from these fits, it is clear
that the results from both sources are approaching the early
time (τ ∼ 5) fit for the pure source, giving us confidence in
the energies extracted from this source.

Thus, the random source test supports a lack of contami-
nation from excited states in our quoted results. However, we
do note that there is no guarantee that randomizing the source
changes the Z factors by at least O(1). Further analysis will
be necessary to definitively establish this conjecture.

IV. CONCLUSION

We have developed a new lattice method for studying
large numbers of fermions at unitarity. The action is highly
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improved, so that our results require no extrapolation to zero
range. In addition, we’ve applied a new method for calculating
correlators from long-tailed distributions [48], through which
we are able to evade costly importance sampling. Our
results agree with those from high-precision solutions to the
Schrödinger equation for N � 6 trapped fermions [57], as well
as with the energy of N = 3 untrapped fermions calculated
by Pricoupenko and Castin [29]. Due to the low cost of the
simulation, we are able to then study up to N = 70 trapped
fermions, finding lower values than published results. One
feature we find is that shell effects persist at the ∼2% above
N = 40 fermions, making it impossible to extract a reliable
value for the Bertsch parameter ξ . The shell effects we find
are much more pronounced than what we see for untrapped
fermions [49].

In a future work we will present results for the homogeneous
system of up to N = 66 unitary fermions in a box, including
our extraction of the Bertsch parameter, ξ , as well as data on
the superfluid gap and integrated contact density for unitary
fermions in a box. We believe this method could be applicable
for a wide variety of nonrelativistic many-body systems, and
these studies of unitary fermions, in addition to their inherent
value, pave the way for investigations of more complex
systems at zero temperature.
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APPENDIX A: TUNING

The two-particle transfer matrix is a linear function of the
two-body couplings C2n:

T (C) = Tfree +
NO−1∑
n=0

C2nT2n, (A1)

where Tfree is the free fermion transfer matrix, and T2n contains
contributions to the interaction C starting at order 2n in
momenta. Eigenvalues λk(C) of this transfer matrix, however,
are nonlinear functions of the couplings. We may compute the
derivative of these eigenvalues with respect to the couplings
using the Feynman-Hellman theorem:

Wkn(C) ≡ ∂λk

∂C2n

= 〈ψk|T2n|ψk〉, (A2)

where T (C)|ψk〉 = λk(C)|ψk〉 for k = 1, . . . ,dim(T ) and the
eigenstates |ψk〉 implicitly depend on C. Tuned values for the
NO couplings are defined as the values C2n (n = 0, . . . ,NO −
1) for which χ2(C) = 0, where

χ2(C) =
NO∑
k=1

δλk(C)2 (A3)

and δλk(C) = λk(C)/λ∗
k − 1. Starting from an initial guess for

the couplings C0
2n, we may iteratively search for the solution

to χ (C) = 0 using

Cr+1 = Cr + εW̃ (Cr )−1δλ(Cr ), (A4)

provided the inverse of the NO-dimensional submatrix W̃

exists, where W̃kn = Wkn for n = 0, . . . ,NO − 1 and k =
1, . . . ,NO. The small parameter ε may be chosen adaptively in
order to improve the convergence of the iterative procedure.

APPENDIX B: CORRELATION FUNCTIONS

Multifermion sources may be constructed from direct
products of single-particle states |ασ

i 〉, where i = 1, . . . ,Nσ

labels each state with quantum number α and σ = (↑ , ↓)
labels the species. In order to satisfy Fermi-Dirac statistics,
fermions of the same species must have different quantum
numbers. As is well-known from quantum mechanics, a simple
way to impose the proper antisymmetrization requirements
on multifermion states is to use Slater-determinants. Thus,
correlation functions of N = N↑ + N↓ fermions may be
expressed as

CN↓,N↑ (τ ) = 〈det S↓(τ ) det S↑(τ )〉, (B1)

where Sσ is an Nσ -dimensional Slater matrix corresponding
to the species σ , given by

Sσ
i,j (τ ) = 〈

ασ
i

∣∣K−1(τ,0)
∣∣ασ

j

〉
. (B2)

Although it is not a requirement, a convenient choice for
the single-particle states |ασ

i 〉 is to use eigenstates of the
noninteracting system. For trapped fermions, they are SHO
states (α = n) in the Cartesian basis. A list of the sources used
in our simulations is provided in Table IV.

Typically multiparticle sources constructed from single-
particle states possess poor overlap with the unitary Fermi
gas ground state. This may easily be seen from the fact
that at early times, where few interactions have occurred,
the correlation function falls off exponentially like that of
free fermions with a Z factor near unity. A better approach
is to incorporate pairing correlations into the interpolating
field by constructing sources and sinks out of two-fermion
wave functions [32]. In practice, such an approach may only
be carried out at the sink; however, because our numerical
approach requires that sources be separable functions; this is
none-the-less adequate to achieve far superior overlap with
the ground state. A consequence of using sources and sinks
that differ is that correlation functions and effective masses
need not be monotically decreasing functions of time. Thus,
when studying correlators of this form, care must be taken to
distinguish shallow local minima in effective masses from true
plateaus.
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FIG. 14. (Color online) Effective mass as a function of τ (lattice units) using two different sources for a half-filled shell (N = 14) and a
nearly closed shell (N = 18) within the second shell (L = 48, L0 = 8.0). The effective mass was calculated using the cumulant expansion
with Nκ = 6 using Eq. (36). The blue circles were generated using a source constructed by filling the single-particle states in the order given in
Table IV, while the red stars were generated using a source constructed of random linear combinations of the single-particle states within each
shell.

For N↑ = N↓ = N/2, these considerations lead us to study
correlation functions of the form:

CN↓,N↑ (τ ) = 〈det S↓↑(τ )〉, (B3)

where

S
↓↑
i,j (τ ) = 〈|K−1(τ,0) ⊗ K−1(τ,0)|α↓

i α
↑
j 〉 (B4)

and |α↓α↑〉 = |α↓〉 ⊗ |α↑〉. In the coordinate basis, we con-
sider two-fermion states |〉 of the form 〈x↓x↑|〉 = (rrel),
where rrel = x↓ − x↑ is the relative coordinate of the two
fermions. It is helpful to express the two-particle wave
functions as a Fourier transform: (rrel) = ∫

dp̃(p)e−p·rrel ,
allowing Eq. (B4) to be written as

S
↓↑
i,j (τ ) =

∑
p

̃(p)〈p|K−1(τ,0)|α↓
i 〉〈−p|K−1(τ,0)|α↑

j 〉. (B5)

Since the projection onto the sink involves only a single sum
over momenta, evaluation of Eq. (B4) scales like O(L3) rather
than the usual O(L6).

Numerical evidence suggests that the best choice for (rrel)
is a lattice approximation to the two-particle s-wave solution
to the continuum Schrödinger equation for unitary fermions,

which possess a 1/|rrel| singularity. We therefore consider a
momentum-space wave function of the form

̃(p) = 2β

|p|d
( |p|

2β

)
, (B6)

where d(x) is Dawson’s integral function. Note that the
wave function has a free parameter β which may be tuned
to maximize the overlap with the ground state. Physically
one expects β ∼ 1/

√
2L0, and this is what we use in

practice.
For odd numbers of fermions, such as in our few-body

studies, one may construct a mixed matrix built out of
both single- and two-fermion wave functions. In the case
N↓ = N↑ + 1, one may may construct such a Slater matrix
by replacing row i of S↓↑ with the same row of S↓. This
replacement corresponds to a removal of the i-th single-
fermion state α

↑
i from the source and, thus, also breaking the

pair involving state i at the sink.
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FIG. 15. (Color online) Effective mass as a function of τ (lattice units) using two different sources for a closed shell (N = 20) and a
half-filled shell (N = 30) within the third shell (L = 48, L0 = 8.0). The effective mass was calculated using the cumulant expansion up to
Nκ = 6 using Eq. (36). The blue circles were generated using a source constructed by filling the single-particle states in the order given in Table
IV, while the red stars were generated using a source constructed of random linear combinations of the single-particle states within each shell.
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APPENDIX C: MEASUREMENT STRATEGY

Our studies have shown that for large numbers of fermions,
the effective mass,

meff(τ ) = − 1

�τ
ln

[C(τ + �τ )

C(τ )

]
, (C1)

obtained from correlators measured in the conventional way,
as a sample average of propagators measured on background φ

configurations, often exhibits a distribution overlap problem.
Several indicators for this problem include: (1) lack of
1/

√
Nconf scaling in the error bars for correlators and measured

quantities derived from them, (2) sudden jumps in estimated
quantities and their associated error bars as a function of the
sample size Nconf , and (3) continued growth of effective masses
at late times, with no evidence for a plateau. Figure 17 provides
a mild demonstration of the third case for N = 4 untrapped
unitary fermions; plotted is the logarithm of the correlation
function C̄(τ ), which has been estimated using ensembles of
size ranging from Nconf = 0.06M to 3.84M configurations. An
estimate of the effective mass at late times, quantified by the
slope of − ln C̄(t) in this figure, appears to decrease as the size
of the ensemble is increased. As the number of configurations
in the ensemble is increased by several orders of magnitude,
C̄(τ ) eventually appears to converge to what is expected to be
the true value of the correlator, indicated by the dashed line and
estimated using a much larger ensemble of size Nconf = 2B

configurations.
In order to understand this behavior better, it is instructive

to study the distribution of the correlator as a function of τ .
The distribution of an arbitrary operator Y (φ) measured on a
background field configuration φ is given by

P (y) =
∫

[dφ]ρ(φ)δ(Y (φ) − y). (C2)

A plot of the correlator distribution, taking Y (φ) = Cφ(τ ) and
y = c, is shown in Fig. 18 for N = 4 fermions at several
values of τ , and demonstrates the formation of a long tail
in the late time limit. Also shown is a corresponding plot of
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FIG. 16. (Color online) Fit results for the ground-state energy
using the two sources shown in Fig. 15 (right). The bands show
results from fitting each source at early times (τ ∼ 5), while the data
points show fit results as a function of the number of cumulants
included for late times (τ ∼ 30). The late time fits from both sources
are approaching the early time fit for the pure source, while the early
and late time fits for the random source do not agree, indicating that
the random source does not reach the ground state until later times.
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FIG. 17. (Color online) Natural logarithm of the N = 4 fermion
correlation function for untrapped unitary fermions of mass M = 5 on
an L = 10 lattice as a function of sample size. Dashed line indicates
the result obtained using Nconf = 2B configurations.

the distribution for the logarithm of the correlation function,
taking Y (φ) = ln Cφ(τ ) and y = ln c, along with the results
from a Gaussian fit to the histograms. The excellent agree-
ment between the fit results and the measured log-correlator
distribution suggests that the multifermion correlation function
is log-normally distributed, or nearly so. Such distributions
are known to possess very long tails, which dominate the
distribution mean, and undersampling the tail can result in
an underestimate in the correlation function and, thus, an
overestimate in the energy obtained from Eq. (C1) at large
times, as was evident in Fig. 17.

Provided we know the underlying distribution for the
correlation function, we may estimate the number of con-
figurations required such that the sample average C̄(τ ) is
normally distributed. Deviations of the sample mean from
the normal distribution may result in an overlap problem
and reflect the fact that the sample size is too small for
the central limit theorem to apply. In particular, if σ and ρ

are the second and third central moments of the correlator
distribution function, then by the Berry-Esseen theorem, one
should show that the condition Nconf � ρ2/σ 3 holds before
invoking the central limit theorem. This condition comes
from quantifying the deviation in the cumulative distribution
function for (C̄ − 〈C〉)√Nconf/σ from that of the standard
normal distribution, where C̄ is the sample mean of the
correlation function obtained from a sample size Nconf . An
example of the cumulative distribution function of this quantity
for N = 4 unitary fermions at several times is shown in Fig. 19
and was obtained from 20 K ensembles each of sample size
Nconf = 100K . The true mean 〈C〉 was estimated using a
sample of size Nconf = 2B configurations. In this example, we
find that for τ = 24 there is little deviation from the standard
normal cumulative distribution function, whereas for τ = 36,
significant deviation is evident.

In Ref. [48], it was shown within mean-field theory that
the log-correlator distribution function defined by Eq. (C2)
is Gaussian with mean ȳ = ln Z + E0(N )τ and variance
σ 2 = 40

9π
E0(N )τ , where E0(N ) is the free-gas ground-state

energy for N noninteracting fermions (N/2 fermions of
each species) and ln Z is the corresponding overlap between
the ground-state wave function and source and sink wave
functions. This in turn implies that the correlator distribution
is log-normally distributed in mean-field limit. We may use
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FIG. 18. (Color online) N = 4 fermion-correlator and natural log-correlator distributions at various time separations τ for unitary fermions
of mass M = 5 on an L = 10 lattice. Solid curves in the log-correlator distribution plot correspond to Gaussian fits to the distribution.

the Berry-Esseen theorem along with our mean-field result
for the correlator distribution to estimate the minimal number
of configurations required for a given value of N and τ . The
result is Nconf � e3 40

9π
E0(N)τ , scaling exponentially in the time

and free-gas energy. Applying this result to the case N = 4, we
find that Nconf � 3K configurations are required for τ = 24,
Nconf � 175K for τ = 36, and Nconf � 10M for τ = 48. The
onset of an overlap problem around τ ∼ 32 in Fig. 19 obtained
from Nconf = 100K configurations is consistent with the
prediction based on the application of Berry-Esseen theorem
to our mean-field calculation.

The traditional technique for avoiding difficulties associ-
ated with distribution overlap problems is to use importance
sampling in the Monte Carlo simulation. In the case of large
numbers of fermions, this might be achieved by reweighting
the probability measure by either the correlation function at
some late time, or some other carefully chosen weight factor.
In the former case, one might use the product ρ(φ)Cφ(τ0) for
an arbitrary but large value of τ0 as a probability measure for
the auxiliary fields, and then measure ensemble averages of the
ratio Cφ(τ )/Cφ(τ0) to estimate the correlator at times τ .10 In
taking such an approach, however, the ensembles generated are
typically only suitable for estimating a specfic operator (e.g.,
a single correlator at a specific value of N ), or a small class of
operators, and are inappropriate for most others. Consequently,
the simulation cost is enhanced by the number of operators
being measured in addition to the difficulty of performing
unquenched simulations using a far more complicated effective
action for the auxiliary field, which generally will involve the
logarithm of a correlation function. This may be likened to
performing a simulation in the Grand Canonical ensemble,
where a different simulation must be performed at each value
of chemical potential to achieve estimates of the energy as a
function of density.

A far more efficient approach proposed in Ref. [48] is to
find a better estimator for C(τ ) that is free from the distribution
overlap problem rather than rely on importance sampling.

10Since effective masses depend only on the ratio C(τ + 1)/C(τ ),
the overall normalization of correlation functions determined from
an ensemble average of 1/Cφ(τ0) using ρ(φ)Cφ(τ0) as a probability
measure is unimportant.

Provided Cφ(τ ) > 0 for every φ,11 a systematic method for
extracting useful information from an undersampled log-
normal-like distribution may be devised by considering the
cumulant expansion

ln CNκ
(τ ) ≡

Nκ∑
n=1

κn(τ )

n!
, (C3)

where κn(τ ) is the n-th cumulant of the distribution for
ln Cφ(τ ), which is presumed to be nearly normally distributed.
In this expansion, systematic uncertainties associated with the
truncation of the series at order Nκ are traded for statistical
uncertainties associated with including increasing numbers
of cumulants which have been estimated from an ensemble
of finite size. For a perfect log-normally distributed Cφ(τ ),
Eq. (C3) is exact at Nκ = 2, since all higher order cumulants
vanish. In practice, if the correlator distribution is not log-
normal, deviations in the distribution would be quantified by
the nonzero contributions to Eq. (C3) from κn with n > 2.
Such contributions—one would hope—are relatively small,
allowing one to reliably obtain an estimate for ln C(τ ) based
on estimates of κn.

The generalized effective mass associated with each partial
sum in Eq. (C3) may be expressed as

m
(Nκ )
eff (τ ) = − 1

�τ

Nκ∑
n=1

1

n!
[κn(τ ) − κn(τ + �τ )] . (C4)

By studying Eq. (C4) as a function of Nκ , one may determine
the ideal value N∗

κ for which the statistical uncertainties
and truncation errors become comparable. Such an N∗

κ then
defines a best estimate value for the effective mass at a
given time τ . Alternatively, we may define an energy ENκ

=
limτ→∞ m

(Nκ )
eff (τ )12 and study its convergence as a function of

Nκ . In all of our studies, we use the latter approach.
Finally, we comment on the applicability of the cumulant

method to odd numbers of fermions. In the case N↑ = N↓ + 1,

11For the case N↑ = N↓, one can show explicitly that correlators
of the type defined in Eqs. (B2) and (B3) are positive for every
background field configuration.
12Although we have not proved the convergence of m

(Nκ )
eff (τ ) as a

function of τ , all of of our numerical evidence suggests that this
quantity tends to a constant at late times.
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FIG. 19. (Color online) Plot of the cumulative distribution func-
tion for (C̄ − 〈C〉)√Nconf/σ for C̄ estimated using 20 K ensembles
each of size Nconf = 100K; 〈C〉 is estimated using 2B configuration.
The dashed line is the cumulative distribution function for the standard
normal distribution.

analysis using the cumulant expansion breaks down, since
negative correlators Cφ(τ ) may exist. For large numbers of
fermions, we find that the fraction of negative correlators in a
given ensemble is typically less than a few percent, however.
Furthermore, unlike the positive part of the distribution, the
negative part exhibits no long tail at large τ . This suggests
that the positive and negative parts of the distribution may
be treated not only independently, but also differently: for
the positive portion one may use the cumulant expansion
technique, and for the negative portion a standard ensemble
average, and the results may then be combined. Although
we do not consider odd numbers of fermions in this paper, we
believe these considerations will be of importance in future
studies of the pairing gap, which requires accurate estimates
of the energy for both even and odd N .

APPENDIX D: SIMULATION DETAILS

The lattice theory described in Sec. II has been implemented
on a number of clusters and massively parallel architectures.
As a result of the low-memory footprint, which scales like
O(N × L3), and extremely fast character of the algorithm [44],
we use an embarrassingly parallel implementation: multiple
streams are farmed out to many different cores and random
generators associated with each core are seeded independently
of each other. Simulations were performed in double preci-
sion, and random numbers were generated using Lüscher’s
Ranlux pseudo-random number generator [59]. Preliminary
studies have shown no statistical advantage to using Gaussian
auxiliary fields over Z2 noise, and therefore all of our studies
have been performed using the latter.

Due to the extremely fast nature of our algorithm, it
was necessary to perform ensemble-averages of multifermion
correlator data on-line in order to eliminate bottlenecks
associated with file I/O and to also reduce storage re-
quirements. Data was therefore ensemble averaged into NB
blocks of size Nconf/NB, where Nconf is the total number of
configurations generated. NB was chosen small enough to
avoid the I/O and storage issues but also large enough to
maintain adequate control over the statistical errors in our
analysis.

We have checked our algorithm and implementation by
comparing numerical predictions of the energies for several
exactly soluble systems with their known solutions. The
four-fermion interaction, for instance, was checked using a
high-precision measurement (Nconf = 4.7B configurations) of
the lowest and first excited state energies for two unitary
fermions of mass M = 5 in a finite box of size L = 8.
The simulation was performed using NO = 4, with couplings
C0 = 0.487259, C2 = 0.298 043,C4 = −0.211 675, and C6 =
0.040 531 1. The temporal extent of the lattice was chosen to
be T = 64, which is approximately three times larger than the
predicted inverse energy difference in the ground and first ex-
cited states, λ∗

1 and λ∗
2, given by Lüscher’s formula. The lowest

two measured energies, λ1 and λ2, were then determined by
fitting the time-dependence of the effective mass [Eq. (C1) with
�τ = 1] to a constant plus exponential form. The effective
mass was fit over an interval [τmin,τmax], where τmax = T and
τmin was varied until a plateau was achieved in the fit values of
λ1 and λ2. We found that the results for the ground state and
first excited state agreed with the theoretical result determined
by Lüscher’s formula to within errors of about 0.007% and 8%,
respectively.

The implementation of the external potential was checked
by measuring the ground and excited state energies of a
single fermion confined to a harmonic trap as a function
of L/L0. In this case, since there are no auxiliary fields
present, this check may be regarded as a numerical calculation,
rather than a simulation. We chose L0 = 2,2.5,3,3.5, and
4 and ω = 0.005 in order to ensure negligible temporal
and spatial discretization errors. Sources with appropriate
symmetry properties were constructed in order to extract
the lowest seven energies of the SHO. In all calculations,
the temporal extant was chosen such that T � 1/ω in order
to eliminate contamination from higher energy states in the
single-fermion correlation functions. Numerical calculations
obtained from spatial lattices L = 8,16,32,64 are shown
in Fig. 5 and show good agreement with the continuum
theory.
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