889 research outputs found
Towards the realistic fermion masses with a single family in extra dimensions
In a class of multidimensional models, topology of a thick brane provides
three chiral fermionic families with hierarchical masses and mixings in the
effective four-dimensional theory, while the full model contains a single
vector-like generation. We carry out numerical simulations and reproduce all
known Standard Model fermion masses and mixings in one of these models.Comment: 12 pages, 2 figures, uses JHEP3.cls. Some minor corrections are mad
Periodic orbit effects on conductance peak heights in a chaotic quantum dot
We study the effects of short-time classical dynamics on the distribution of
Coulomb blockade peak heights in a chaotic quantum dot. The location of one or
both leads relative to the short unstable orbits, as well as relative to the
symmetry lines, can have large effects on the moments and on the head and tail
of the conductance distribution. We study these effects analytically as a
function of the stability exponent of the orbits involved, and also numerically
using the stadium billiard as a model. The predicted behavior is robust,
depending only on the short-time behavior of the many-body quantum system, and
consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure
Localization properties of groups of eigenstates in chaotic systems
In this paper we study in detail the localized wave functions defined in
Phys. Rev. Lett. {\bf 76}, 1613 (1994), in connection with the scarring effect
of unstable periodic orbits in highly chaotic Hamiltonian system. These
functions appear highly localized not only along periodic orbits but also on
the associated manifolds. Moreover, they show in phase space the hyperbolic
structure in the vicinity of the orbit, something which translates in
configuration space into the structure induced by the corresponding self--focal
points. On the other hand, the quantum dynamics of these functions are also
studied. Our results indicate that the probability density first evolves along
the unstable manifold emanating from the periodic orbit, and localizes
temporarily afterwards on only a few, short related periodic orbits. We believe
that this type of studies can provide some keys to disentangle the complexity
associated to the quantum mechanics of these kind of systems, which permits the
construction of a simple explanation in terms of the dynamics of a few
classical structures.Comment: 9 pages, 8 Postscript figures (low resolution). For high resolution
versions of figs http://www.tandar.cnea.gov.ar/~wisniack/ To appear in Phys.
Rev.
Neutrino Oscillations and Collider Test of the R-parity Violating Minimal Supergravity Model
We study the R-parity violating minimal supergravity models accounting for
the observed neutrino masses and mixing, which can be tested in future collider
experiments. The bi-large mixing can be explained by allowing five dominant
tri-linear couplings and . The desired ratio
of the atmospheric and solar neutrino mass-squared differences can be obtained
in a very limited parameter space where the tree-level contribution is tuned to
be suppressed. In this allowed region, we quantify the correlation between the
three neutrino mixing angles and the tri-linear R-parity violating couplings.
Qualitatively, the relations , and are required by the large
atmospheric neutrino mixing angle and the small angle
, and the large solar neutrino mixing angle ,
respectively. Such a prediction on the couplings can be tested in the next
linear colliders by observing the branching ratios of the lightest
supersymmetric particle (LSP). For the stau or the neutralino LSP, the ratio
can be measured
by establishing or , respectively. The
information on the couplings can be drawn by measuring if the neutralino LSP is heavier than the top
quark.Comment: RevTex, 25 pages, 8 eps figure
A High Power Hydrogen Target for Parity Violation Experiments
Parity-violating electron scattering measurements on hydrogen and deuterium,
such as those underway at the Bates and CEBAF laboratories, require
luminosities exceeding cms, resulting in large beam
power deposition into cryogenic liquid. Such targets must be able to absorb 500
watts or more with minimal change in target density. A 40~cm long liquid
hydrogen target, designed to absorb 500~watts of beam power without boiling,
has been developed for the SAMPLE experiment at Bates. In recent tests with
40~A of incident beam, no evidence was seen for density fluctuations in
the target, at a sensitivity level of better than 1\%. A summary of the target
design and operational experience will be presented.Comment: 13 pages, 9 postscript figure
Parity Violation with Electrons and Hadrons
A key question in understanding the structure of nucleons involves the role
of sea quarks in their ground state electromagnetic properties such as charge
and magnetism. Parity-violating electron scattering, when combined with
determination of nucleon electromagnetic form factors from parity-conserving
e-N scattering, provides another degree of freedom to separately determine the
up, down and strange quark contributions to nucleon electromagnetic structure.
Strange quarks are unique in that they are exclusively in the nucleon's sea. A
program of experiments using parity violating electron scattering has been
underway for approximately a decade, and results are beginning to emerge. This
paper is a brief overview of the various experiments and their results to date
along with a short-term outlook of what can be anticipated from experiments in
the next few years.Comment: Invited talk at the 17th International IUPAP Conference on Few-Body
Problems in Physic
Scarred Patterns in Surface Waves
Surface wave patterns are investigated experimentally in a system geometry
that has become a paradigm of quantum chaos: the stadium billiard. Linear waves
in bounded geometries for which classical ray trajectories are chaotic are
known to give rise to scarred patterns. Here, we utilize parametrically forced
surface waves (Faraday waves), which become progressively nonlinear beyond the
wave instability threshold, to investigate the subtle interplay between
boundaries and nonlinearity. Only a subset (three main types) of the computed
linear modes of the stadium are observed in a systematic scan. These correspond
to modes in which the wave amplitudes are strongly enhanced along paths
corresponding to certain periodic ray orbits. Many other modes are found to be
suppressed, in general agreement with a prediction by Agam and Altshuler based
on boundary dissipation and the Lyapunov exponent of the associated orbit.
Spatially asymmetric or disordered (but time-independent) patterns are also
found even near onset. As the driving acceleration is increased, the
time-independent scarred patterns persist, but in some cases transitions
between modes are noted. The onset of spatiotemporal chaos at higher forcing
amplitude often involves a nonperiodic oscillation between spatially ordered
and disordered states. We characterize this phenomenon using the concept of
pattern entropy. The rate of change of the patterns is found to be reduced as
the state passes temporarily near the ordered configurations of lower entropy.
We also report complex but highly symmetric (time-independent) patterns far
above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added
references and text. For high resolution images:
http://physics.clarku.edu/~akudrolli/stadium.htm
Clock drawing performance in cognitively normal elderly
The Clock Drawing Test (CDT) is a common neuropsychological measure sensitive to cognitive changes and functional skills (e.g., driving test performance) among older adults. However, normative data have not been adequately developed. We report the distribution of CDT scores using three common scoring systems [Mendez, M. F., Ala, T., & Underwood, K. L. (1992). Development of scoring criteria for the Clock Drawing Task in Alzheimer's Disease. Journal of the American Geriatrics Society, 40, 1095-1099; Cahn, D. A., Salmon, D. P., Monsch, A. U., Butters, N., Wiederholt, W. C., & Corey-Bloom, J. (1996). Screening for dementia of the Alzheimer type in the community: The utility of the Clock Drawing Test. Archives of Clinical Neuropsychology, 11(6), 529-539], among 207 cognitively normal elderly. The systems were well correlated, took little time to use, and had high inter-rater reliability. We found statistically significant differences in CDT scores based on age and WRAT-3 Reading score, a marker of education quality. We present means, standard deviations, and t- and z-scores based on these subgroups. We found that "normal" CDT performance includes a wider distribution of scores than previously reported. Our results may serve as useful comparisons for clinicians wishing to know whether their patients perform in the general range of cognitively normal elderly. © 2007 National Academy of Neuropsychology
- …