699 research outputs found

    Polar Jahn-Teller centers and magnetic neutron scattering cross-section in copper oxides

    Full text link
    In the framework of the model of the polar singlet-triplet Jahn-Teller centers the cross-section is obtained for magnetic neutron scattering in high-TcT_{c} cuprates. Multi-mode character of the CuO4CuO_{4} cluster ground manifold in the new phase of polar centers determines the dependence of magnetic form-factor on the local structure and charge state of the center. It is shown that magnetic inelastic neutron scattering in the system of the polar singlet-triplet Jahn-Teller centers permits to investigate the non-magnetic charge and structure excitations.Comment: 13 pages, LaTe

    Strategy management through quantitative modelling of performance measurement systems

    Get PDF
    This paper is based on previous works on performance measurement and on quantification of relationships between factors which affect performance. It demonstrates how tools and techniques developed can be used to evaluate the performance of alternative strategic choices through a quantitative approach to modelling of performance measurement systems. The paper provides a brief background to the research problem and preceding works. The tools and techniques used are briefly introduced. Use of these tools and techniques to evaluate the performance of alternative manufacturing strategies is demonstrated. Finally, the capability of the approach to deal with dynamic environments is demonstrated using sensitivity analysis

    Empowerment for Continuous Agent-Environment Systems

    Full text link
    This paper develops generalizations of empowerment to continuous states. Empowerment is a recently introduced information-theoretic quantity motivated by hypotheses about the efficiency of the sensorimotor loop in biological organisms, but also from considerations stemming from curiosity-driven learning. Empowemerment measures, for agent-environment systems with stochastic transitions, how much influence an agent has on its environment, but only that influence that can be sensed by the agent sensors. It is an information-theoretic generalization of joint controllability (influence on environment) and observability (measurement by sensors) of the environment by the agent, both controllability and observability being usually defined in control theory as the dimensionality of the control/observation spaces. Earlier work has shown that empowerment has various interesting and relevant properties, e.g., it allows us to identify salient states using only the dynamics, and it can act as intrinsic reward without requiring an external reward. However, in this previous work empowerment was limited to the case of small-scale and discrete domains and furthermore state transition probabilities were assumed to be known. The goal of this paper is to extend empowerment to the significantly more important and relevant case of continuous vector-valued state spaces and initially unknown state transition probabilities. The continuous state space is addressed by Monte-Carlo approximation; the unknown transitions are addressed by model learning and prediction for which we apply Gaussian processes regression with iterated forecasting. In a number of well-known continuous control tasks we examine the dynamics induced by empowerment and include an application to exploration and online model learning

    Neutrino Oscillations and Collider Test of the R-parity Violating Minimal Supergravity Model

    Full text link
    We study the R-parity violating minimal supergravity models accounting for the observed neutrino masses and mixing, which can be tested in future collider experiments. The bi-large mixing can be explained by allowing five dominant tri-linear couplings λ1,2,3 \lambda'_{1,2,3} and λ1,2\lambda_{1,2}. The desired ratio of the atmospheric and solar neutrino mass-squared differences can be obtained in a very limited parameter space where the tree-level contribution is tuned to be suppressed. In this allowed region, we quantify the correlation between the three neutrino mixing angles and the tri-linear R-parity violating couplings. Qualitatively, the relations λ1<λ2λ3| \lambda'_1 | < | \lambda'_2| \sim | \lambda'_3|, and λ1λ2|\lambda_1| \sim |\lambda_2| are required by the large atmospheric neutrino mixing angle θ23\theta_{23} and the small angle θ13\theta_{13}, and the large solar neutrino mixing angle θ12\theta_{12}, respectively. Such a prediction on the couplings can be tested in the next linear colliders by observing the branching ratios of the lightest supersymmetric particle (LSP). For the stau or the neutralino LSP, the ratio λ12:λ22:λ12+λ22|\lambda_1|^2: |\lambda_2|^2: |\lambda_1|^2 + |\lambda_2|^2 can be measured by establishing Br(eν):Br(μν):Br(τν)Br(e\nu): Br(\mu\nu) : Br(\tau\nu) or Br(νe±τ):Br(νμ±τ):Br(ντ±τ)Br(\nu e^\pm \tau^\mp ): Br(\nu\mu^\pm\tau^\mp) : Br(\nu\tau^\pm\tau^\mp), respectively. The information on the couplings λi\lambda'_i can be drawn by measuring Br(litbˉ)λi2Br(l_i t \bar{b}) \propto |\lambda'_i|^2 if the neutralino LSP is heavier than the top quark.Comment: RevTex, 25 pages, 8 eps figure

    Noise Can Reduce Disorder in Chaotic Dynamics

    Full text link
    We evoke the idea of representation of the chaotic attractor by the set of unstable periodic orbits and disclose a novel noise-induced ordering phenomenon. For long unstable periodic orbits forming the strange attractor the weights (or natural measure) is generally highly inhomogeneous over the set, either diminishing or enhancing the contribution of these orbits into system dynamics. We show analytically and numerically a weak noise to reduce this inhomogeneity and, additionally to obvious perturbing impact, make a regularizing influence on the chaotic dynamics. This universal effect is rooted into the nature of deterministic chaos.Comment: 11 pages, 5 figure

    Horizontal symmetry in Higgs sector of GUT with U(1)_A symmetry

    Full text link
    In a series of papers, we pointed out that an anomalous U(1)AU(1)_A gauge symmetry naturally solves various problems in grand unified theories (GUTs) and that a horizontal gauge symmetry, SU(2)HSU(2)_H or SU(3)HSU(3)_H, not only realizes the unification of three generation quarks and leptons in fewer multiplets but also solves the supersymmetric flavor problem. In this paper, we examine the possibility that the Higgs sectors of the GUT symmetry and of the horizontal symmetry are unified, that is, there are some Higgs fields whose vacuum expectation values (VEVs) break both the GUT gauge symmetry and the horizontal symmetry at the same time. Although the scale of the VEVs become too large to suppress the flavor changing neutral current processes sufficiently, the unification is possible. In addition, for the SU(3)HSU(3)_H models, the SU(3)HSU(3)_H gauge anomaly is cancelled in the unified models without introducing additional fields in contrast with the previous models in which the Higgs sectors are not unified.Comment: 35 page

    Neutrino masses in R-parity violating supersymmetric models

    Full text link
    We study neutrino masses and mixing in R-parity violating supersymmetric models with generic soft supersymmetry breaking terms. Neutrinos acquire masses from various sources: Tree level neutrino--neutralino mixing and loop effects proportional to bilinear and/or trilinear R-parity violating parameters. Each of these contributions is controlled by different parameters and have different suppression or enhancement factors which we identified. Within an Abelian horizontal symmetry framework these factors are related and specific predictions can be made. We found that the main contributions to the neutrino masses are from the tree level and the bilinear loops and that the observed neutrino data can be accommodated once mild fine-tuning is allowed.Comment: 18 pages; minor typos corrected. To be published in Physical Review
    corecore