23 research outputs found

    Comparing the State of Democratic Elections Among South Africa (2019), Tanzania (2020), and Ghana (2020)

    Get PDF
    The Economist Intelligence Unit (EIU) (2021) indicates that Tanzania has scored lower democratic performance than Ghana and South Africa, however, the criteria used for ranking democratic performance are general and not specific enough to justify the state of democratic elections in comparative terms, between South Africa, Ghana, and Tanzania. These countries share some features, for instance, the adoption of international instruments for governing democratic elections, however, they have different scores in democracy, with Tanzania being at the low level, as indicated by the EIU. These observations warrant the need to compare their state of democratic elections and explore why Tanzania earned a low democratic performance in its 2020 elections compared to Ghana and South Africa. The Most Similar Systems Design was used in case selection. The methodologies applied are secondary qualitative research. Findings indicate that Tanzania's level of democracy in its 2020 elections was low compared to South Africa (2019) and Ghana (2020). This is due to the number of challenges that Tanzania faced in its 2020 elections compared to Ghana and South Africa. Challenges range from the design of an electoral legal framework to the election administration. Recommendations for improving democracy in Tanzanian future elections are also provided

    Stratigraphische und paläontologische Untersuchungen im Jura und der Kreide des tansanischen Küstenstreifens im Hinterland von Dar-Es-Salaam und Bagamoyo

    No full text
    Die vorliegende Arbeit beschäftigt sich mit Strati graphischen, paläontologischen und paläogeographischen Untersuchungen im Jura und in der Kreide des tansanischen Küstenstreifens im Hinterland von Dar-es-Salaam und Bagamoyo. Die Sedimentgesteine werden in sechs lithostratigraphische Einheiten gegliedert, von denen vier neu aufgestellt werden: Ngerengere-Formation (bisher Ngerengere-Sandstein; Unterjura-tiefes Aalenium), Ruvu-Formation (bisher Ruvu-Schichten; Mittel aal enium-Oberaaleni um), Lugoba- Formation (Bajocium-?Bathonium) , Malivundo-Formation (Callovium-Mitteloxfordium), Magindu -Formation (Callovium) und Chalinze-Formation (Unterkreide). Sieben Profile des Jura und der Kreide werden einzeln beschrieben und ihr Makro- sowie Mikrofossilinhalt angegeben. Mit Ammoniten werden in der Ruvu -Formation zwei biostratigraphische Zonen des Mittel- und Oberaalenium festgestellt (Murehisonae- und Concavum-Zone). In der Malivundo-Formation werden aufgrund von Ammoniten drei Zonen (Athleta-Lamberti- , Mariae-Cordatum und Transversarium-Zone} nachgewiesen. Der höchste Teil der Chalinze-Formation wird mit planktonischen Foraminiferen in die Globigerinelloides algerianus-Zone des Oberaptium gestellt. Korrelationen des Jura im Untersuchungsgebiet mit anderen Gebieten innerhalb Tansanias sowie mit anderen Gebieten in der indo-madagassischen Provinz werden durchgeführt. Dreiundzwanzig Ammonitenarten (sechs Familien) aus der Ruvu-, Malivundo- und Magindu-Formation sowie siebzehn Foraminiferenarten (sechs Oberfamilien), die aus der Malivundo- und Chalinze-Formation stammen, werden systematisch beschrieben. Fazies, Ablagerungsbedingungen und Tektonik werden diskutiert. Im Mittelaalenium-Oberaalenium, weiter nördlich erst im Bajocium erfolgt die Transgression nach W auf fluviatile Sedimente der Ngerengere-Formation bzw. auf das Kristallin. Im Hangenden des Oxfordium setzt mit erneuter Riffbildung eine regressive Phase im höheren Oberjura ein. Erst mit der Unterkreide erfolgt mit der Chalinze-Formation eine erneute Transgression. Die paläobiogeographischen Beziehungen der Ammoniten zu anderen Gebieten in der indo-madagassischen Provinz, zu Europa und Südamerika werden aufgezeigt. Unter Berücksichtigung sämtlicher bisher bekannter Fundorte der Mayaitiden-Gattungen ergibt sich, daß sie hauptsächlich auf die indo-madagassische Provinz beschränkt sind.thesisDFG, SUB Göttinge

    Bajocian ammonites from Msata hill (Lugoba formation) in the hinterland of Dar es Salaam, Tanzania

    No full text
    Ammonites from the Middle Jurassic exposures of the Lugoba Formation at Msata, are described for the first time in Tanzania. Out of a number of ammonite fragments recovered from the bluish-green silty limestone (M3), only three fragments were fairly well preserved to permit their specific identification. Two species were identified: Dorsetensia cf. D. romani (OPPEL) and Oecotraustes (Paroecotraustes?) cf. angustus DOUVILLE. This ammonite assemblage is biostratigraphically correlatable with the Lower Bajocian Posidonia shale of the Kambe Limestone series in Kenya, in which similar ammonites species and other related Bajocian species have been described. Pending new discovery of ammonoid fauna and other guide fossils, on the basis of this ammonite evidence, the Lugoba Formation is reasonably assigned to the Humphrieasianum – Zone of the Lower Bajocian Tanz. J. Sci. Vol.29(2) 2003: 35-4

    The Impact of Power and Power Relationships in the Public Policy Formulation Process: A Case Study of the Formulation Process of 2014 Tanzania’s Education and Training Policy

    No full text
    Power struggle among stakeholders in public policy formulation process is a common phenomenon in a state informed by democratic politics. The extent of its gravity could have positive or negative implication in policy legitimacy, ownership, and implementation processes. The formulation process of Tanzania’s Education and Training Policy (ETP) of 2014 saw a substantial varied set of competing stakeholders. Each set of actors exerted a different amount of power, which subsequently impacted the policy process. Empirical data revealed that the process was dominated by government officials and few prominent as well as powerful Community-Based Organizations. Recommendations from such categories of stakeholders were likely to be included in the policy document, unlike those from the powerless, non-famous, and ordinary citizens. Besides, scarcity of resources and persuasion through arguments, which enter the category of politics of policy making process, coupled with opposing values and interests of policy actors were the main factors that determined powers over decision making. Therefore, this article suggests that a big enough budget should be provided to the entire policy formulation process, and a need to put, in place, effective power balancing mechanisms with a view to widen and deepen the level of stakeholders’ participation in policy formulation process

    Foraminifera from the Lower Cretaceous rocks of the Chalinze-Formation in the hinterland of Dar es Salaam (Tanzania) and their biostratigraphical implication

    No full text
    This paper attempts to give a systematic description, illustration and biostratigraphical significance of the foraminifera from the Lower-Mid-Cretaceous exposures of the Chalinze-formation (located between 120 km and 134 km W of Dar es Salaam) in Tanzania. Fifteen foraminiferal species all of which were hitherto undocumented in Tanzania were identified from three out of fifteen samples collected from a marl/sandstone sequence forming the upper part of the Formation. Four species are planktonic (Globigerinacea) assigned to two genera. The benthic forms include four superfamilies : Lituo-lacea (1 species), Nodosariacea (6 species), Spirillinacea (1 species) and Cassidulinacea (3 species). The occurrence of foraminiferal species such as Globigerinelloides algerianus CUSHMAN & ten DAM, G. barri (BOLLI et al.) and G. ferreolensis (MOULLADE) enables the author, on the basis of stratigraphie distribution of these fossils in Europe, Mexico and North Africa, to ascribe the upper part of the Chalinze-Formation to Upper Aptian (G. ferreolensis -G. algerianus -Zones). Although the basal conglomeratic sandstone of this Formation has not yet been precisely dated, th& present study modifies the original view put forward by KENT et al. (1971, text fig. 34) that Albian at Chalinze area was transgressive onto Upper Jurassic rocks.Etude systématique et biostratigraphique des Foraminifères du Crétacé inférieur et moyen de la Chalinza formation (Tanzanie). 4 espèces planctoniques et 11 benthiques ont été recensées. La présence de Globigerinelloides algerianus, G. barri et G. fer-reolensis permet d'attribuer le sommet de la Chalinze-formation à l'Aptien supérieur, ce qui vieillit l'âge de la transgression (généralement datée de l'Albien) du Crétacé sur le Jurassique supérieur.Kapilima S. Foraminifera from the Lower Cretaceous rocks of the Chalinze-Formation in the hinterland of Dar es Salaam (Tanzania) and their biostratigraphical implication. In: Géologie Méditerranéenne. Tome 11, numéro 1-2, 1984. C.A.M. IXe colloque africain de micropaléontologie. Paris, Museum d'Histoire Naturelle, du 3 au 6 octobre 1983. pp. 101-115

    Paleontological exploration in Africa: a view from the Rukwa Rift Basin of Tanzania

    No full text
    [Extract] The Mesozoic-Cenozoic transition was a period of dramatic global change during which time the Earth's continents were in the process of fragmenting from a large, relatively continuous landmass to assume a configuration similar to that seen today. The most significant tectonic activity in the southern hemisphere occurred during the Cretaceous-Paleogene interval, when the large Gondwanan sub-regions of Africa, South America, Australia, Indo- Madagascar and Antarctica became increasingly isolated from one another (Smith et al., 1994; Scotese, 2001). Continental dynamics of this scale are not only geologically significant, they also profoundly influenced the evolution of both terrestrial and marine biotas (Forster, 1999; Krause et al., 1999; Sereno, 1999; Lieberman, 2000; Upchurch et al., 2002; Humphries and Ebach, 2004). Indeed, the Cretaceous-Paleogene transition marks large-scale faunal turnover of major vertebrate and invertebrate taxa (e.g., extinction of nonavian dinosaurs, radiation of "modern" mammals and birds; Cracraft, 2001; Springer et al., 2003, 2004; Archibald and Fastovsky, 2004; Kielan-Jaworowska et al., 2004; Rose and Archibald, 2004; Clarke et al., 2005).\ud \ud Numerous hypotheses have been proposed to explain the origin, diversification, and extinction of many vertebrate groups living on, or dispersing through, Gondwana during the Cretaceous and Paleogene. For example, molecular studies have postulated a Cretaceous-Paleogene African origin for a number of higher-level amniote clades, including Placentalia (Murphy et al., 2001 and references therein), Afrotheria (Hedges et al., 1996; Springer et al., 1997, 2003, 2005; Madsen et al., 2001; van Dijk et al., 2001), and neornthine birds (Cracraft, 2001). In particular, an ancient ( Cretaceous/Paleocene) Gondwanan primate origin has been proposed, with a strepsirrhine-haplorhine divergence occurring shortly thereafter (e.g., Tavare et al., 2002). African origins have also been proposed for a number of Malagasy terrestrial and freshwater groups (e.g., etropline cichlids (Vences et al., 2001); lemurs (Yoder et al., 2003, Poux et al., 2005); tenrecs (Poux et al., 2005)). Yet divergence time estimates retrieved by molecular studies for various clades often vastly predate the first occurrences of those groups in the fossil record (e.g., Smith and Peterson, 2002), instigating considerable debate as to the time of origin and path of dispersal for a broad range of taxa (e.g., Martin, 2000; de Wit, 2003; Schrago and Russo, 2003; Rose and Archibald, 2004; de Queiroz, 2005; Masters et al., 2006). This is perhaps not surprising, as Martin and others have demonstrated that by any measure, the vertebrate fossil record (particularly in places like Africa) is dismayingly incomplete, such that dates derived from paleontological data alone are likely to significantly underestimate true divergence times (Martin, 1993, 2000; Paul, 1998; Tavare et al., 2002; Miller et al., 2005). Whereas questions remain regarding the reliability of molecular clocks with respect to calibration and rate heterogeneity (Smith and Peterson, 2002), it is also clear that sustained work is needed to improve sampling of the fossil record and test molecular hypotheses by providing fossil data that can be used to more rigorously calibrate and refine divergence time estimates (Seiffert et al., 2003; Yoder et al., 2003). This is particularly true of undersampled regions where new discoveries can have a profound effect on hypotheses based on presence/absence data (e.g., a Cretaceous gondwanatherian mammal from Tanzania; Krause et al., 2003b; O’Connor et al., 2006). Moreover, recent studies examining the robusticity of biogeographic reconstructions demonstrate that even a single new outgroup or ingroup fossil can powerfully influence area-of-origin interpretations (e.g., Stevens and Heesy, 2004, 2006; Heesy et al., 2006)

    A new vertebrate fauna from the Cretaceous Red Sandstone Group, Rukwa Rift Basin, Southwestern Tanzania

    No full text
    The Rukwa Rift Basin Project was initiated to conduct exploratory field paleontology in poorly sampled terrestrial strata in southern and western Tanzania. Here we report the discovery of a series of new fossiliferous localities from Red Sandstone Group deposits in the Rukwa Rift Basin. These localities contain a diverse Cretaceous terrestrial/freshwater vertebrate fauna that consists of members of several major clades, including fishes, turtles, crocodyliforms, dinosaurs and mammals. Expeditions conducted in the austral summers of 2002–05 have identified numerous fossil-bearing localities, with specimens ranging from isolated elements to semi-articulated sauropod and theropod dinosaurs. Notable among the finds are the most complete mammal specimen recovered from the Cretaceous of continental Africa, megaloolithid dinosaur eggshell, and both theropod and sauropod dinosaurs. Given the scarcity of Cretaceous terrestrial faunas from sub-equatorial Africa, this portion of the East Africa Rift System holds great promise for providing new paleontological data that will contribute to testing and refining a number of biogeographic hypotheses that have been advanced to explain Gondwanan vertebrate distributions in the latter half of the Mesozoic

    Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)

    No full text
    The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German-Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinvertebrates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. <br><br> The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. Presumably, tidal flats and coastal plains were visited by dinosaurs primarily during periods of drought. (3) Vegetated hinterland. Vegetation of this environment can only be inferred indirectly from plant material transported into the other depositional environments. Vegetation was dominated by a diverse conifer flora, which apparently formed part of the food source of large herbivorous sauropods. Evidence from various sources suggests a subtropical to tropical palaeoclimate, characterised by seasonal rainfall alternating with a pronounced dry season during the Late Jurassic. In Early Cretaceous times, sedimentological and palaeontological proxies suggest a climatic shift towards more humid conditions. <br><br> Die Tendaguru-Schichten von Tansania in Ostafrika (Oberjura bis Unterkreide) sind als Lagerstätte oberjurassischer Dinosaurier seit nahezu einem Jahrhundert weltweit bekannt. Anhand von sedimentologischen und paläontologischen Daten, die während der Deutsch-Tansanischen Tendaguru Expedition 2000 im Typus-Gebiet der Tendaguru-Schichten gewonnen wurden, werden Paläo-Ökosysteme rekonstruiert. Grundlage der Rekonstruktionen sind die Auswertung sedimentologischer Daten sowie die paläo-ökologische Analyse von Makroinvertebraten, Mikrovertebraten, pflanzlichen Fossilien und Mikrofossilien (Ostrakoden, Foraminiferen, Charophyten, Palynomorphen). Darüber hinaus werden Informationen über Dinosaurier berücksichtigt, die bei früheren Expeditionen gewonnen wurden. <br><br> Das hier vorgestellte Ablagerungsmodell der Tendaguru-Schichten umfaßt drei Teilbereiche eines randlich marinen Sedimentationsraumes, die wie folgt gekennzeichnet werden können: (1) Lagunen-artige, marine Flachwasserbereiche, die oberhalb der Schönwetter-Wellenbasis lagen und unter deutlichem Einfluß von Gezeiten und Stürmen standen. Sie waren vom offenen Meer durch Barrieren, wie Ooidbarren und siliziklastischen Sandbarrenkomplexen, getrennt und wiesen einen leicht schwankenden Salzgehalt auf. (2) Ausgedehnte Wattgebiete und flache Küstenebenen. Dort befanden sich niedrig-energetische, brackische Strandseen und Teiche sowie Tümpel und kleinere Flußrinnen, in denen die großen Dinosaurier eingebettet wurden. Da diese Lebensräume bestenfalls dürftig bewachsen waren, müssen die Nahrungsquellen und der eigentliche Lebensraum der riesigen Sauropoden anderswo gelegen haben. Vermutlich wurden die Wattgebiete und Flachküsten von Dinosauriern vorrangig in den Trockenzeiten aufgesucht. (3) Bewachsenes Hinterland. Die Vegetation dieses Lebensraumes kann nur indirekt aus Pflanzenresten erschlossen werden, die in die anderen Ablagerungsraume transportiert wurden. Die Vegetation wurde von einer diversen Koniferenflora dominiert, die zumindest teilweise die Nahrungsgrundlage der großen, herbivoren Sauropoden bildete. Sedimentologische und paläontologische Indikatoren sprechen für ein subtropisches bis tropisches Klima wahrend der späten Jurazeit mit einem jahreszeitlichen Wechsel von Regenfällen und ausgeprägten Trockenzeiten. In der frühen Kreidezeit deutet sich ein Wechsel zu starker humiden Bedingungen an. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20020050103" target="_blank">10.1002/mmng.20020050103</a

    Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)

    No full text
    The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German-Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinvertebrates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. Presumably, tidal flats and coastal plains were visited by dinosaurs primarily during periods of drought. (3) Vegetated hinterland. Vegetation of this environment can only be inferred indirectly from plant material transported into the other depositional environments. Vegetation was dominated by a diverse conifer flora, which apparently formed part of the food source of large herbivorous sauropods. Evidence from various sources suggests a subtropical to tropical palaeoclimate, characterised by seasonal rainfall alternating with a pronounced dry season during the Late Jurassic. In Early Cretaceous times, sedimentological and palaeontological proxies suggest a climatic shift towards more humid conditions. Die Tendaguru-Schichten von Tansania in Ostafrika (Oberjura bis Unterkreide) sind als Lagerstätte oberjurassischer Dinosaurier seit nahezu einem Jahrhundert weltweit bekannt. Anhand von sedimentologischen und paläontologischen Daten, die während der Deutsch-Tansanischen Tendaguru Expedition 2000 im Typus-Gebiet der Tendaguru-Schichten gewonnen wurden, werden Paläo-Ökosysteme rekonstruiert. Grundlage der Rekonstruktionen sind die Auswertung sedimentologischer Daten sowie die paläo-ökologische Analyse von Makroinvertebraten, Mikrovertebraten, pflanzlichen Fossilien und Mikrofossilien (Ostrakoden, Foraminiferen, Charophyten, Palynomorphen). Darüber hinaus werden Informationen über Dinosaurier berücksichtigt, die bei früheren Expeditionen gewonnen wurden. Das hier vorgestellte Ablagerungsmodell der Tendaguru-Schichten umfaßt drei Teilbereiche eines randlich marinen Sedimentationsraumes, die wie folgt gekennzeichnet werden können: (1) Lagunen-artige, marine Flachwasserbereiche, die oberhalb der Schönwetter-Wellenbasis lagen und unter deutlichem Einfluß von Gezeiten und Stürmen standen. Sie waren vom offenen Meer durch Barrieren, wie Ooidbarren und siliziklastischen Sandbarrenkomplexen, getrennt und wiesen einen leicht schwankenden Salzgehalt auf. (2) Ausgedehnte Wattgebiete und flache Küstenebenen. Dort befanden sich niedrig-energetische, brackische Strandseen und Teiche sowie Tümpel und kleinere Flußrinnen, in denen die großen Dinosaurier eingebettet wurden. Da diese Lebensräume bestenfalls dürftig bewachsen waren, müssen die Nahrungsquellen und der eigentliche Lebensraum der riesigen Sauropoden anderswo gelegen haben. Vermutlich wurden die Wattgebiete und Flachküsten von Dinosauriern vorrangig in den Trockenzeiten aufgesucht. (3) Bewachsenes Hinterland. Die Vegetation dieses Lebensraumes kann nur indirekt aus Pflanzenresten erschlossen werden, die in die anderen Ablagerungsraume transportiert wurden. Die Vegetation wurde von einer diversen Koniferenflora dominiert, die zumindest teilweise die Nahrungsgrundlage der großen, herbivoren Sauropoden bildete. Sedimentologische und paläontologische Indikatoren sprechen für ein subtropisches bis tropisches Klima wahrend der späten Jurazeit mit einem jahreszeitlichen Wechsel von Regenfällen und ausgeprägten Trockenzeiten. In der frühen Kreidezeit deutet sich ein Wechsel zu starker humiden Bedingungen an. doi:10.1002/mmng.20020050103</a
    corecore