9 research outputs found

    Investigating boundaries of survival, growth and expression of genes associated with stress and virulence of Listeria monocytogenes in response to acid and osmotic stress.

    No full text
    The objective of this study was to correlate the relative transcription of Listeria monocytogenes (strains C5, 6179) stress- (gad2, sigB) and virulence- (prfA) associated genes following habituation at twenty-five pH (4.8, 5.0, 5.2, 5.5, 6.4) and NaCl (2, 4, 6, 8, 10% w/v) combinations at 7 °C, with the survival against subsequent exposure to severe acid stress (pH 2.0 at 37 °C). Our findings pointed out the inter-strain variation governing growth inhibiting conditions (pH ≀5.0 and NaCl ≄6%), where C5 was less affected (a reduction of 2.0-3.0 log CFU/mL) than 6179 which was reduced by 4.0-6.0 log CFU/mL at the end of storage. Nevertheless, the higher the habituation at the growth permitting (pH ≄5.5; NaCl ≀4% w/v) or growth inhibiting conditions, the higher the acquired acid resistance or sensitization, respectively. At day 2, gad2 increased relative transcriptional levels are more related to elevated acid resistance, while at day 6 both gad2 transcriptional levels and upregulation of sigB were correlated to low log reductions and high DpH:2.0-values against severe acid stress. Regarding virulence, the increased transcriptional levels of prfA at day 2 were correlated to adverse pH and NaCl combinations, while prolonged stay in suboptimal conditions as well as exposure to severe acid stress resulted in general activation of the virulence regulator. Such data could definitely contribute in designing safe intervention strategies and additionally integrate -omics aspects in quantitative microbial risk assessment

    Active packaging films based on polyolefins modified by organic and inorganic nanoparticles

    No full text
    Nowadays, the use of polymer films for flexible packaging has gained a widespread importance because of their easy processing, good final properties, light weight and low relative cost. In order to fulfill the needs of increasingly demanding consumers respect to the quality of packaged products, additional capabilities must be incorporated into packaging. In this sense, academic and industrial efforts have focused on new technologies that provide a complementary functionality to the packaging performance. These emerging developments involve active and intelligent packaging, which can attract to consumers, improve product quality and/or balance any detrimental effect. In this context, the use of nanoparticle (NP) modified polyolefins, either in bulk (nanocomposites) or on the surface, allows the inclusion of specific functionalities. These new capabilities enable obtaining active packaging according to the requirements of the product. The aim of this chapter is to analyze the aforementioned approaches for the development of active films by incorporating antibacterial, antifungal and/or repellent functionalities. Currently, several sustainable developments of this type of active films are based on commodity thermoplastics such as poly(ethylene) and poly(propylene). These materials, modified by the incorporation of organic and inorganic NPs, are promising candidates since their final properties can be tailored for packaging application.Fil: Alonso, Yanela Natalin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentina. Universidad Nacional del Sur. Departamento de IngenierĂ­a QuĂ­mica; ArgentinaFil: Grafia, Ana Luisa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentina. Universidad Nacional del Sur. Departamento de IngenierĂ­a QuĂ­mica; ArgentinaFil: Castillo, Luciana Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentina. Universidad Nacional del Sur. Departamento de IngenierĂ­a QuĂ­mica; ArgentinaFil: Barbosa, Silvia Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentina. Universidad Nacional del Sur. Departamento de IngenierĂ­a QuĂ­mica; Argentin

    Hurdle factors minimizing growth of <em>Listeria monocytogenes</em> while counteracting <em>in situ</em> antilisterial effects of a novel nisin A-producing <em>Lactococcus lactis</em> subsp. <em>cremoris</em> costarter in thermized cheese milks

    No full text
    corecore