6 research outputs found

    Motor unit characteristics after targeted muscle reinnervation

    Get PDF
    Targeted muscle reinnervation (TMR) is a surgical procedure used to redirect nerves originally controlling muscles of the amputated limb into remaining muscles above the amputation, to treat phantom limb pain and facilitate prosthetic control. While this procedure effectively establishes robust prosthetic control, there is little knowledge on the behavior and characteristics of the reinnervated motor units. In this study we compared the m. pectoralis of five TMR patients to nine able-bodied controls with respect to motor unit action potential (MUAP) characteristics. We recorded and decomposed high-density surface EMG signals into individual spike trains of motor unit action potentials. In the TMR patients the MUAP surface area normalized to the electrode grid surface (0.25 ± 0.17 and 0.81 ± 0.46, p < 0.001) and the MUAP duration (10.92 ± 3.89 ms and 14.03 ± 3.91 ms, p < 0.01) were smaller for the TMR group than for the controls. The mean MUAP amplitude (0.19 ± 0.11 mV and 0.14 ± 0.06 mV, p = 0.07) was not significantly different between the two groups. Finally, we observed that MUAP surface representation in TMR generally overlapped, and the surface occupied by motor units corresponding to only one motor task was on average smaller than 12% of the electrode surface. These results suggest that smaller MUAP surface areas in TMR patients do not necessarily facilitate prosthetic control due to a high degree of overlap between these areas, and a neural information—based control could lead to improved performance. Based on the results we also infer that the size of the motor units after reinnervation is influenced by the size of the innervating motor neuron

    An examination of biochemical parameters and their association with response to ketogenic dietary therapies

    Get PDF
    Objective: In the absence of specific metabolic disorders, accurate predictors of response to ketogenic dietary therapies (KDTs) for treating epilepsy are largely unknown. We hypothesized that specific biochemical parameters would be associated with the effectiveness of KDT in humans with epilepsy. The parameters tested were β-hydroxybutyrate, acetoacetate, nonesterified fatty acids, free and acylcarnitine profile, glucose, and glucose-ketone index (GKI). Methods: Biochemical results from routine blood tests conducted at baseline prior to initiation of KDT and at 3-month follow-up were obtained from 13 adults and 215 children with KDT response data from participating centers. One hundred thirty-two (57%) of 228 participants had some data at both baseline and 3 months; 52 (23%) of 228 had data only at baseline; 22 (10%) of 228 had data only at 3 months; and 22 (10%) of 228 had no data. KDT response was defined as ≥50% seizure reduction at 3-month follow-up. Results: Acetyl carnitine at baseline was significantly higher in responders (p < 0.007). It was not associated with response at 3-month follow-up. There was a trend for higher levels of free carnitine and other acylcarnitine esters at baseline and at 3-month follow-up in KDT responders. There was also a trend for greater differences in levels of propionyl carnitine and in β-hydroxybutyrate measured at baseline and 3-month follow-up in KDT responders. No other biochemical parameters were associated with response at any time point. Significance: Our finding that certain carnitine fractions, in particular baseline acetyl carnitine, are positively associated with greater efficacy of KDT is consistent with the theory that alterations in energy metabolism may play a role in the mechanisms of action of KDT. Go here for SF

    Toward higher-performance bionic limbs for wider clinical use

    No full text
    Funding Information: We were supported by the Academy of Finland (I.V.), Austrian Federal Ministry of Science (A.S. and O.C.A.), Bertarelli Foundation (S.M.), the European Union (A.S., D.F., K.-P.H., O.C.A., R.B. and S.M.), the European Research Council (A.S., D.F. and O.C.A.), German Federal Ministry of Education and Research BMBF (K.-P.H. and T.S.), the German National Research Foundation (T.S.), the Royal British Legion (A.M.J.B.), the Swedish Innovation Agency (VINNOVA) (R.B.), the Swedish Research Council (R.B.), the Swiss National Competence Center in Research (NCCR) in Robotics (S.M.), US Department of Defense (R.B. and H.H.), US Department of Veterans Affairs (D.T.), US Department of Veterans Affairs Rehabilitation Research and Development Service (R.F.ff.W.), US National Institute on Disability, Independent Living and Rehabilitation Research (H.H. and T.K.), US National Institutes of Health (D.T., H.H., L.J.H. and R.F.ff.W.), US National Institute on Neurological Disorders and Stroke (R.F.ff.W.), USNational Institute on Bioimaging and Bioengineering (R.F.ff.W.) and US National Science Foundation (H.H.). Publisher Copyright: © 2021, Springer Nature Limited.Most prosthetic limbs can autonomously move with dexterity, yet they are not perceived by the user as belonging to their own body. Robotic limbs can convey information about the environment with higher precision than biological limbs, but their actual performance is substantially limited by current technologies for the interfacing of the robotic devices with the body and for transferring motor and sensory information bidirectionally between the prosthesis and the user. In this Perspective, we argue that direct skeletal attachment of bionic devices via osseointegration, the amplification of neural signals by targeted muscle innervation, improved prosthesis control via implanted muscle sensors and advanced algorithms, and the provision of sensory feedback by means of electrodes implanted in peripheral nerves, should all be leveraged towards the creation of a new generation of high-performance bionic limbs. These technologies have been clinically tested in humans, and alongside mechanical redesigns and adequate rehabilitation training should facilitate the wider clinical use of bionic limbs.Peer reviewe

    Toward higher-performance bionic limbs for wider clinical use

    No full text
    corecore