17 research outputs found

    Towards revised physically based parameter estimation methods for the Pitman monthly rainfall-runoff model

    Get PDF
    This paper presents a preliminary stage in the development of an alternative parameterisation procedure for the Pitman monthly rainfall runoff model which enjoys popular use in water resource assessment in Southern Africa. The estimation procedures are based on the premise that it is possible to use physical basin properties directly in the quantification of the soil moisture accounting, runoff, and recharge and infiltration parameters. The results for selected basins show that the revised parameters are at least as good as current regionalised sets or give satisfactory results in areas where no regionalised parameters exist

    Regional application of the Pitman monthly rainfall-runoff model in Southern Africa incorporating uncertainty

    Get PDF
    Climate change and a growing demand for freshwater resources due to population increases and socio-economic changes will make water a limiting factor (in terms of both quantity and quality) in development. The need for reliable quantitative estimates of water availability cannot be over-emphasised. However, there is frequently a paucity of the data required for this quantification as many basins, especially in the developing world, are inadequately equipped with monitoring networks. Existing networks are also shrinking due mainly to shortages in human and financial resources. Over the past few decades mathematical models have been used to bridge the data gap by generating datasets for use in management and policy making. In southern Africa, the Pitman monthly rainfall-runoff model has enjoyed relatively popular use as a water resources estimation tool. However, it is acknowledged that models are abstractions of reality and the data used to drive them is imperfect, making the model outputs uncertain. While there is acknowledgement of the limitations of modelled data in the southern African region among water practitioners, there has been little effort to explicitly quantify and account for this uncertainty in water resources estimation tools and explore how it affects the decision making process. Uncertainty manifests itself in three major areas of the modelling chain; the input data used to force the model, the parameter estimation process and the model structural errors. A previous study concluded that the parameter estimation process for the Pitman model contributed more to the global uncertainty of the model than other sources. While the literature abounds with uncertainty estimation techniques, many of these are dependent on observations and are therefore unlikely to be easily applicable to the southern African region where there is an acute shortage of such data. This study focuses on two aspects of making hydrologic predictions in ungauged basins. Firstly, the study advocates the development of an a priori parameter estimation process for the Pitman model and secondly, uses indices of hydrological functional behaviour to condition and reduce predictive uncertainty in both gauged and ungauged basins. In this approach all the basins are treated as ungauged, while the historical records in the gauged basins are used to develop regional indices of expected hydrological behaviour and assess the applicability of these methods. Incorporating uncertainty into the hydrologic estimation tools used in southern Africa entails rethinking the way the uncertain results can be used in further analysis and how they will be interpreted by stakeholders. An uncertainty framework is proposed. The framework is made up of a number of components related to the estimation of the prior distribution of the parameters, used to generate output ensembles which are then assessed and constrained using regionalised indices of basin behavioural responses. This is premised on such indices being based on the best available knowledge covering different regions. This framework is flexible enough to be used with any model structure to ensure consistent and comparable results. While the aim is to eventually apply the uncertainty framework in the southern African region, this study reports on the preliminary work on the development and testing of the framework components based on South African basins. This is necessitated by the variations in the availability and quality of the data across the region. Uncertainty in the parameter estimation process was incorporated by assuming uncertainty in the physical and hydro-meteorological data used to directly quantify the parameter. This uncertainty was represented by the range of variability of these basin characteristics and probability distribution functions were developed to account for this uncertainty and propagate it through the estimation process to generate posterior distributions for the parameters. The results show that the framework has a great deal of potential but can still be improved. In general, the estimated uncertain parameters managed to produce hydrologically realistic model outputs capturing the expected regimes across the different hydro-climatic and geo-physical gradients examined. The regional relationships for the three indices developed and tested in this study were in general agreement with existing knowledge and managed to successfully provide a multi-criteria conditioning of the model output ensembles. The feedback loop included in the framework enabled a systematic re-examination of the estimation procedures for both the parameters and the indices when inconsistencies in the results were identified. This improved results. However, there is need to carefully examine the issues and problems that may arise within other basins outside South Africa and develop guidelines for the use of the framework.iText 1.4.6 (by lowagie.com

    Revised parameter estimation methods for the Pitman monthly rainfall-runoff model

    Get PDF
    In recent years, increased demands have been placed on hydrologists to find the most effective methods of making predictions of hydrologic variables in ungauged basins. A huge part of the southern African region is ungauged and, in gauged basins, the extent to which observed flows represent natural flows is unknown, given unquantified upstream activities. The need to exploit water resources for social and economic development, considered in the light of water scarcity forecasts for the region, makes the reliable quantification of water resources a priority. Contemporary approaches to the problem of hydrological prediction in ungauged basins in the region have relied heavily on calibration against a limited gauged streamflow database and somewhat subjective parameter regionalizations using areas of assumed hydrological similarity. The reliance of these approaches on limited historical records, often of dubious quality, introduces uncertainty in water resources decisions. Thus, it is necessary to develop methods of estimating model parameters that are less reliant on calibration. This thesis addresses the question of whether physical basin properties and the role they play in runoff generation processes can be used directly in the estimation of parameter values of the Pitman monthly rainfall-runoff model. A physically-based approach to estimating the soil moisture accounting and runoff parameters of a conceptual, monthly time-step rainfall-runoff model is proposed. The study investigates the physical meaning of the model parameters, establishes linkages between parameter values and basin physical properties and develops relationships and equations for estimating the parameters taking into account the spatial and temporal scales used in typical model applications. The estimationmethods are then tested in selected gauged basins in southern Africa and the results of model simulations evaluated against historical observed flows. The results of 71 basins chosen from the southern African region suggest that it is possible to directly estimate hydrologically relevant parameters for the Pitman model from physical basin attributes. For South Africa, the statistical and visual fit of the simulations using the revised parameters were at least as good as the current regional sets, albeit the parameter sets being different. In the other countries where no regionalized parameter sets currently exist, simulations were equally good. The availability, within the southern African region, of the appropriate physical basin data and the disparities in the spatial scales and the levels of detail of the data currently available were identified as potential sources of uncertainty. GIS and remote sensing technologies and a widespread use of this revised approach are expected to facilitate access to these data

    Towards revised physically based parameter estimation methods for the Pitman monthly rainfall-runoff model

    Get PDF
    This paper presents a preliminary stage in the development of an alternative parameterisation procedure for the Pitman monthly rainfall runoff model which enjoys popular use in water resource assessment in Southern Africa. The estimation procedures are based on the premise that it is possible to use physical basin properties directly in the quantification of the soil moisture accounting, runoff, and recharge and infiltration parameters. The results for selected basins show that the revised parameters are at least as good as current regionalised sets or give satisfactory results in areas where no regionalised parameters exist.Keywords: hydrological modelling, Southern Africa, parameters, regionalisation, uncertaint

    Application of the rainfall infiltration breakthrough (RIB) model for groundwater recharge estimation in west coastal South Africa

    Get PDF
    Recharge estimation in arid and semi-arid areas is very challenging. The chloride mass balance method applied in western South Africa fails to provide reliable recharge estimates near coastal areas. A relationship between rainfall events and water level fluctuations (WLF) on a monthly basis was proposed in the rainfall infiltration breakthrough (RIB) model for the purpose of groundwater recharge estimation. In this paper, the physical meaning of parameters in the CRD and previous RIB models is clarified, and the RIB model is reviewed with the algorithm improved to accommodate various time scales, namely, daily, monthly and annual scales. Recharge estimates on a daily and monthly basis using the revised RIB approach in 2 study areas, one in a sandy alluvial aquifer (Riverlands) and the other in the Table Mountain Group (TMG) shallow unconfined aquifer (Oudebosch), are presented, followed by sensitivity analysis. Correlation analysis between rainfall and observed WLF data at daily scale and monthly scale, together with recharge estimates obtained from other methods, demonstrates that the RIB results using monthly data are more realistic than those for daily data, when using long time series. Scenarios using the data from Oudebosch with different rainfall and groundwater abstraction inputs are simulated to explore individual effects on water levels as well as recharge rate estimated on a daily basis. The sensitivity analysis showed that the recharge rate by the RIB model is specifically sensitive to the parameter of specific yield; therefore, the accurate representative specific yield of the aquifer needs to be selected with caution. The RIB model demonstrated in these two cases can be used to estimate groundwater recharge with sufficiently long time series of groundwater level and rainfall available in similar regions. In summary, the RIB model is best suited for shallow unconfined aquifers with relatively lower transmissiv - ity; the utility of the RIB model for application in different climatic areas under different hydrogeological conditions needs to be further explored.Web of Scienc

    Revised parameter estimation methods for the Pitman monthly rainfall-runoff model

    No full text
    In recent years, increased demands have been placed on hydrologists to find the most effective methods of making predictions of hydrologic variables in ungauged basins. A huge part of the southern African region is ungauged and, in gauged basins, the extent to which observed flows represent natural flows is unknown, given unquantified upstream activities. The need to exploit water resources for social and economic development, considered in the light of water scarcity forecasts for the region, makes the reliable quantification of water resources a priority. Contemporary approaches to the problem of hydrological prediction in ungauged basins in the region have relied heavily on calibration against a limited gauged streamflow database and somewhat subjective parameter regionalizations using areas of assumed hydrological similarity. The reliance of these approaches on limited historical records, often of dubious quality, introduces uncertainty in water resources decisions. Thus, it is necessary to develop methods of estimating model parameters that are less reliant on calibration. This thesis addresses the question of whether physical basin properties and the role they play in runoff generation processes can be used directly in the estimation of parameter values of the Pitman monthly rainfall-runoff model. A physically-based approach to estimating the soil moisture accounting and runoff parameters of a conceptual, monthly time-step rainfall-runoff model is proposed. The study investigates the physical meaning of the model parameters, establishes linkages between parameter values and basin physical properties and develops relationships and equations for estimating the parameters taking into account the spatial and temporal scales used in typical model applications. The estimationmethods are then tested in selected gauged basins in southern Africa and the results of model simulations evaluated against historical observed flows. The results of 71 basins chosen from the southern African region suggest that it is possible to directly estimate hydrologically relevant parameters for the Pitman model from physical basin attributes. For South Africa, the statistical and visual fit of the simulations using the revised parameters were at least as good as the current regional sets, albeit the parameter sets being different. In the other countries where no regionalized parameter sets currently exist, simulations were equally good. The availability, within the southern African region, of the appropriate physical basin data and the disparities in the spatial scales and the levels of detail of the data currently available were identified as potential sources of uncertainty. GIS and remote sensing technologies and a widespread use of this revised approach are expected to facilitate access to these data

    Regional application of the Pitman monthly rainfall-runoff model in Southern Africa incorporating uncertainty

    No full text
    Climate change and a growing demand for freshwater resources due to population increases and socio-economic changes will make water a limiting factor (in terms of both quantity and quality) in development. The need for reliable quantitative estimates of water availability cannot be over-emphasised. However, there is frequently a paucity of the data required for this quantification as many basins, especially in the developing world, are inadequately equipped with monitoring networks. Existing networks are also shrinking due mainly to shortages in human and financial resources. Over the past few decades mathematical models have been used to bridge the data gap by generating datasets for use in management and policy making. In southern Africa, the Pitman monthly rainfall-runoff model has enjoyed relatively popular use as a water resources estimation tool. However, it is acknowledged that models are abstractions of reality and the data used to drive them is imperfect, making the model outputs uncertain. While there is acknowledgement of the limitations of modelled data in the southern African region among water practitioners, there has been little effort to explicitly quantify and account for this uncertainty in water resources estimation tools and explore how it affects the decision making process. Uncertainty manifests itself in three major areas of the modelling chain; the input data used to force the model, the parameter estimation process and the model structural errors. A previous study concluded that the parameter estimation process for the Pitman model contributed more to the global uncertainty of the model than other sources. While the literature abounds with uncertainty estimation techniques, many of these are dependent on observations and are therefore unlikely to be easily applicable to the southern African region where there is an acute shortage of such data. This study focuses on two aspects of making hydrologic predictions in ungauged basins. Firstly, the study advocates the development of an a priori parameter estimation process for the Pitman model and secondly, uses indices of hydrological functional behaviour to condition and reduce predictive uncertainty in both gauged and ungauged basins. In this approach all the basins are treated as ungauged, while the historical records in the gauged basins are used to develop regional indices of expected hydrological behaviour and assess the applicability of these methods. Incorporating uncertainty into the hydrologic estimation tools used in southern Africa entails rethinking the way the uncertain results can be used in further analysis and how they will be interpreted by stakeholders. An uncertainty framework is proposed. The framework is made up of a number of components related to the estimation of the prior distribution of the parameters, used to generate output ensembles which are then assessed and constrained using regionalised indices of basin behavioural responses. This is premised on such indices being based on the best available knowledge covering different regions. This framework is flexible enough to be used with any model structure to ensure consistent and comparable results. While the aim is to eventually apply the uncertainty framework in the southern African region, this study reports on the preliminary work on the development and testing of the framework components based on South African basins. This is necessitated by the variations in the availability and quality of the data across the region. Uncertainty in the parameter estimation process was incorporated by assuming uncertainty in the physical and hydro-meteorological data used to directly quantify the parameter. This uncertainty was represented by the range of variability of these basin characteristics and probability distribution functions were developed to account for this uncertainty and propagate it through the estimation process to generate posterior distributions for the parameters. The results show that the framework has a great deal of potential but can still be improved. In general, the estimated uncertain parameters managed to produce hydrologically realistic model outputs capturing the expected regimes across the different hydro-climatic and geo-physical gradients examined. The regional relationships for the three indices developed and tested in this study were in general agreement with existing knowledge and managed to successfully provide a multi-criteria conditioning of the model output ensembles. The feedback loop included in the framework enabled a systematic re-examination of the estimation procedures for both the parameters and the indices when inconsistencies in the results were identified. This improved results. However, there is need to carefully examine the issues and problems that may arise within other basins outside South Africa and develop guidelines for the use of the framework.iText 1.4.6 (by lowagie.com

    Revised parameter estimation methods for the Pitman monthly rainfall-runoff model

    No full text
    In recent years, increased demands have been placed on hydrologists to find the most effective methods of making predictions of hydrologic variables in ungauged basins. A huge part of the southern African region is ungauged and, in gauged basins, the extent to which observed flows represent natural flows is unknown, given unquantified upstream activities. The need to exploit water resources for social and economic development, considered in the light of water scarcity forecasts for the region, makes the reliable quantification of water resources a priority. Contemporary approaches to the problem of hydrological prediction in ungauged basins in the region have relied heavily on calibration against a limited gauged streamflow database and somewhat subjective parameter regionalizations using areas of assumed hydrological similarity. The reliance of these approaches on limited historical records, often of dubious quality, introduces uncertainty in water resources decisions. Thus, it is necessary to develop methods of estimating model parameters that are less reliant on calibration. This thesis addresses the question of whether physical basin properties and the role they play in runoff generation processes can be used directly in the estimation of parameter values of the Pitman monthly rainfall-runoff model. A physically-based approach to estimating the soil moisture accounting and runoff parameters of a conceptual, monthly time-step rainfall-runoff model is proposed. The study investigates the physical meaning of the model parameters, establishes linkages between parameter values and basin physical properties and develops relationships and equations for estimating the parameters taking into account the spatial and temporal scales used in typical model applications. The estimationmethods are then tested in selected gauged basins in southern Africa and the results of model simulations evaluated against historical observed flows. The results of 71 basins chosen from the southern African region suggest that it is possible to directly estimate hydrologically relevant parameters for the Pitman model from physical basin attributes. For South Africa, the statistical and visual fit of the simulations using the revised parameters were at least as good as the current regional sets, albeit the parameter sets being different. In the other countries where no regionalized parameter sets currently exist, simulations were equally good. The availability, within the southern African region, of the appropriate physical basin data and the disparities in the spatial scales and the levels of detail of the data currently available were identified as potential sources of uncertainty. GIS and remote sensing technologies and a widespread use of this revised approach are expected to facilitate access to these data

    A Systematic Study Site Selection Protocol to Determine Environmental Flows in the Headwater Catchments of the Vhembe Biosphere Reserve

    No full text
    Developing nations will be worst hit by the impacts of climate change because limited resources hinder the spatial reach of climate studies, effort, and subsequent implementation to help with the improvement of livelihoods. Therefore, finding the best-case study is an essential undertaking in environmental assessments. This study explains one systematic approach to selecting a study site for an environmental assessment project. A desktop review of relevant literature, a simple factor scoring assessment process, reliance on expert opinion, and a field survey for ground-truthing were conducted. The desktop review showed the most critical factors to site selection. The scoring of these factors selected those that were crucial for the study. Experts validated the results and suggested the best study site among the ones identified. While the design is simplified, the proposed approach selects the most appropriate study site for environmental assessments
    corecore