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ABSTRACT 

 

Climate change and a growing demand for freshwater resources due to population 

increases and socio-economic changes will make water a limiting factor (in terms 

of both quantity and quality) in development. The need for reliable quantitative 

estimates of water availability cannot be over-emphasised. However, there is 

frequently a paucity of the data required for this quantification as many basins, 

especially in the developing world, are inadequately equipped with monitoring 

networks. Existing networks are also shrinking due mainly to shortages in human 

and financial resources. Over the past few decades mathematical models have 

been used to bridge the data gap by generating datasets for use in management 

and policy making. In southern Africa, the Pitman monthly rainfall-runoff model 

has enjoyed relatively popular use as a water resources estimation tool. However, 

it is acknowledged that models are abstractions of reality and the data used to 

drive them is imperfect, making the model outputs uncertain. While there is 

acknowledgement of the limitations of modelled data in the southern African 

region among water practitioners, there has been little effort to explicitly quantify 

and account for this uncertainty in water resources estimation tools and explore 

how it affects the decision making process. 

 

Uncertainty manifests itself in three major areas of the modelling chain; the input 

data used to force the model, the parameter estimation process and the model 

structural errors. A previous study concluded that the parameter estimation 

process for the Pitman model contributed more to the global uncertainty of the 

model than other sources. While the literature abounds with uncertainty 

estimation techniques, many of these are dependent on observations and are 

therefore unlikely to be easily applicable to the southern African region where 

there is an acute shortage of such data. This study focuses on two aspects of 

making hydrologic predictions in ungauged basins. Firstly, the study advocates 

the development of an a priori parameter estimation process for the Pitman 

model and secondly, uses indices of hydrological functional behaviour to condition 

and reduce predictive uncertainty in both gauged and ungauged basins. In this 

approach all the basins are treated as ungauged, while the historical records in 

the gauged basins are used to develop regional indices of expected hydrological 

behaviour and assess the applicability of these methods.  
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Incorporating uncertainty into the hydrologic estimation tools used in southern 

Africa entails rethinking the way the uncertain results can be used in further 

analysis and how they will be interpreted by stakeholders. An uncertainty 

framework is proposed. The framework is made up of a number of components 

related to the estimation of the prior distribution of the parameters, used to 

generate output ensembles which are then assessed and constrained using 

regionalised indices of basin behavioural responses. This is premised on such 

indices being based on the best available knowledge covering different regions. 

This framework is flexible enough to be used with any model structure to ensure 

consistent and comparable results.  

 

While the aim is to eventually apply the uncertainty framework in the southern 

African region, this study reports on the preliminary work on the development 

and testing of the framework components based on South African basins. This is 

necessitated by the variations in the availability and quality of the data across the 

region. Uncertainty in the parameter estimation process was incorporated by 

assuming uncertainty in the physical and hydro-meteorological data used to 

directly quantify the parameter. This uncertainty was represented by the range of 

variability of these basin characteristics and probability distribution functions were 

developed to account for this uncertainty and propagate it through the estimation 

process to generate posterior distributions for the parameters. The results show 

that the framework has a great deal of potential but can still be improved. In 

general, the estimated uncertain parameters managed to produce hydrologically 

realistic model outputs capturing the expected regimes across the different 

hydro-climatic and geo-physical gradients examined. The regional relationships 

for the three indices developed and tested in this study were in general 

agreement with existing knowledge and managed to successfully provide a multi-

criteria conditioning of the model output ensembles. The feedback loop included 

in the framework enabled a systematic re-examination of the estimation 

procedures for both the parameters and the indices when inconsistencies in the 

results were identified. This improved results. However, there is need to carefully 

examine the issues and problems that may arise within other basins outside 

South Africa and develop guidelines for the use of the framework.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Rationale 

Effective and sustainable management of water resources demand reliable 

quantifications of water amount, distribution and quality. With demands on water 

resources rapidly growing across the globe there is a growing need for accurate 

monitoring, forecasting and simulation of hydrologic variables especially in the 

major (often transboundary in nature in southern Africa) river basins, for optimal 

water resources management and, more urgently, food security. However, the 

available data are frequently far from being sufficient (both in terms of accuracy 

and spatial/temporal resolution) for the practical application of the best 

estimation methods. In many parts of the world, especially in the developing 

countries, there is a severe lack of historical observations regarding essential 

water resources variables (WWAP, 2009), rendering many basins effectively 

ungauged. This usually leads to a considerable gap in the understanding of the 

components of these vital resources, leading to poor quantification of the 

resources and impacting decision and/or policy making. In the long run, with the 

rapid growth of demand for water resources of a reasonable quality, this places a 

limit on the future human and socio-economic development of the region (Basson 

et al., 1997). This knowledge gap has been partly bridged by the use of 

hydrological and water resources models (Oreskes, 2003). These have therefore 

emerged over the past forty years or so as practical tools to provide the 

necessary information on water availability and quality, as well as being used to 

simulate the impacts of present day and future human development. More 

recently they have also been applied to the problem of predicting the hydrological 

impacts of land use and climate change and the effects on water resources 

availability. It is safe to conclude that the science of hydrology over the years has 

evolved from merely being an observational science to a predictive science 

(Whitfield et al., 2006). 

 

It is impossible to accurately represent all hydrological processes in a model and 

the information available to establish a model for any specified basin (i.e. climate 

and basin physical property data such as topography, soils, vegetation, geology, 

etc.) is typically less than perfect. This inevitably results in predictions that are 

imperfect and that could span a range of equally plausible simulations. 

Uncertainty is an unavoidable element in any hydrologic modelling study (Beven, 
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2001; Wagener et al., 2004) and the concept of uncertainty is the basic tenet and 

modelling philosophy advocated by Beven (1993) and is the cornerstone of a ten 

year initiative by the International Association of Hydrological Sciences (IAHS) on 

Prediction in Ungauged Basins (PUB, Sivapalan et al., 2003). PUB aims to improve 

the ability of the hydrological community to predict hydrological behaviour at any 

given ungauged site. While this is a difficult task which may be difficult to 

achieve, it is the understanding and treatment of uncertainty in the whole 

prediction process that may eventually provide insight into the problem of 

ungauged basins (Meixner et al., 2004). A number of international working 

groups were established in order to achieve the objectives of PUB and one of 

these is the Uncertainty Working Group. The Uncertainty Working Group has been 

tasked with exploring novel ways to explicitly estimate and propagate all possible 

sources of uncertainty in hydrological modelling and seek a unifying framework 

for evaluating models under uncertainty (Wagener et al., 2006b).  

 

Notwithstanding the undeniable utility of models in water resources management, 

it is necessary to explicitly acknowledge the limitations, and often futility, of 

pursuing optimum solutions based on the use of imprecise representations of 

reality and forcing data. Model prediction uncertainty has therefore become an 

integral component of model application. Many questions arise in the use of 

model outputs in water resources planning and management and one of the most 

significant is how defects in data and the models affect prediction accuracy and 

uncertainty. The literature abounds with descriptions and discussions of 

uncertainty and the three major contributory sources of uncertainty in water 

resources estimation include the quantity and quality of the input data used to 

force the model, model structural and parameter estimation errors (Ratto et al., 

2007; Walker et al., 2003). One of the ways to address this uncertainty challenge 

is to improve data collection but this has to be done in relation to current theory, 

lest resources be expended with little benefit. However, improvements in the 

theory should also take cognizance of the realities of available and collectable 

data, otherwise they are unlikely to yield productive results (Sieberstein, 2006).   

 

The use of model-based results in policy and/or decision making makes it 

imperative to have the ‘best’ information (in whatever form) to be available for 

reliable and robust results (Reggiani et al., 2009). If the information available is 

uncertain and therefore cannot give an accurate and/or optimum basis for 

decision making, then the level of the uncertainty must be ascertained and 

acknowledged. This enables a decision maker the latitude to make an informed 
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choice based on some form of risk analysis. Understanding, quantification and 

accounting for uncertainties is expected to contribute to improved decision 

making and thus improved management practices (Ajami et al., 2007). 

Uncertainty analysis is central to improving the predictive capacity of hydrologic 

models and uncertainty assessment of model simulations has risen to prominence 

in the last few years (Refsgaard et al., 2007; Pappenberger and Beven, 2006), 

while uncertainty reduction is the focus of the PUB (Sivapalan et al., 2003) 

programme.  

 

One of the critical issues with regards uncertainty in water resources modelling is 

how to do practical assessments in ungauged basins. In the literature, many 

reviews and techniques are based on reasonably gauged basins and little is said 

about the ungauged basins. It is important to realize and accept that historical 

observations are only available for a limited number of basins and the majority of 

the basins globally are ungauged. This means that there is an urgent need to 

develop techniques for accounting for uncertainty in such situations. This is not 

an easy undertaking as there are no data to guide predictions, making it 

effectively impossible to accurately quantify the confidence in whatever methods 

may be developed. A number of approaches to modelling based on uncertainty 

have been proposed and used in PUB with the aim of making predictions in 

ungauged basins. The basics have been to try to account for the various sources 

of uncertainty and include the generation of all acceptable possible model 

outcomes covering the expected range of uncertainty as well as regionalization 

(Nathan and McMahon, 1990) methods. The latter are difficult approaches to use 

in a region like southern Africa where the data available are usually insufficient 

for the establishment of local models (i.e. calibration process) which is the first 

step in developing regional relationships. However, the transition from the 

identification of local models at gauged basins to the establishment of 

relationships for regional models suitable for ungauged sites has some significant 

shortcomings related to the uncertainties associated with the local models and 

how these are affected by data errors and their own parameter uncertainties 

(Wagener et al., 2004; Wagener and Wheater, 2006). It should be noted that the 

streamflow data available in many regions are the residual flows after poorly- or 

un-quantified upstream human developments, which means they would rarely 

represent natural hydrology conditions. Even the regional calibration approach by 

Fernandez et al., (2000), which simultaneously optimizes both the model 

parameter calibration and the regional relationships, is unlikely to be effective in 

such situations.  
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Alternatives have been based on the generation of an ensemble of predictions for 

ungauged basins (e.g. Wagener and Wheater, 2006, McIntyre et al., 2005 and 

Yadav et al., 2007), or the use of a priori parameter estimation techniques (e.g. 

Koren et al., 2004; Kapangaziwiri, 2008). The latter approach avoids reliance on 

historical data for calibration of the model. This study explores the combined use 

of two approaches used in PUB for the generation of ensemble predictions for the 

ungauged basins of southern Africa. A priori parameter estimates are generated 

based on available basin physical property data. Conceptual relationships 

between the model parameters and basin physical and/or hydro-climatic data are 

developed based on general physical hydrology principles (Kapangaziwiri, 2008). 

To be able to generate output ensembles, prior probability distributions are 

developed for the parameters which account for the uncertainty expected in their 

determination. The uncertainty distributions are developed through the 

incorporation of the variability in the basin physical data (Chapter 4). Simple 

sampling from the feasible parameter space results in sets of parameters that are 

used to generate multiple outputs. What is therefore required is to determine the 

limits of acceptability for the outputs in order to reject the unacceptable models. 

One way of doing this is to explore the use of characteristics of catchment 

hydrological behaviour to assess and condition the model simulations. The 

question that needs to be answered is ‘are there data available to develop such 

behavioural indices (or footprints)’?. These indices could possibly be determined 

from relationships with physical basin attributes (predictors). A simple example of 

a catchment hydrological response index is the runoff coefficient which would 

require such data as mean runoff and mean precipitation. In order to include all 

the possible values of the index, there is need to incorporate the uncertainties 

related to its estimation and the task is to explore how this could be achieved and 

determine the limits of acceptable uncertainty.  

 

In a region such as southern Africa, there has been a long history in the use of 

models for regional and national water resources assessments and the solution of 

practical problems and one of the tools extensively used is the Pitman (Pitman, 

1973; Hughes et al., 2006), conceptual, semi-distributed monthly rainfall-runoff 

model. In South Africa, the model is applied at the so-called quaternary sub-basin 

(or catchment) scale (from 10’s to over 10 000 km2 of area). Application of the 

model in ungauged basins has been based on regionalized parameter sets. While 

these sets have worked well in some basins, there are basins in which they have 

produced less than satisfactory results. It is well accepted that there are 

uncertainties related to both the parameterisation of the model and 
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regionalization process. However, regional water resources assessments have 

continued to be used in water resources planning and management without any 

explicit incorporation of uncertainty, regardless of the results being based on 

regional extrapolations from very limited observed data. South Africa has had 

water resources assessment studies since the 1970s, with the most familiar being 

the water resources assessment project of the early 1990s (WR90, Midgley et al., 

1994) and the more recent WR2005 (Bailey, 2009). There are many instances 

where updated simulations have been used for specific basins and the results are 

often very different to the WR90 or WR2005 data. While such a situation points to 

potential problems in the regional application of the model and represents a clear 

example of the existence of uncertainty, the uncertainty is never quantified. 

Earlier recognition of the uncertainty problem in water resources assessment can 

be found in Ashton et al. (1999) and Anderson (2002). These articles allude to 

the uncertainty inherent in assessment tools used in South Africa and the 

potential impacts of this on model outputs. Experience of water resources 

estimation in the country (and within the region) also suggests that there is some 

skepticism about modelling outputs and an acknowledgement of uncertainty 

within the hydrological community. Currently, new results (e.g. WR2005) are 

simply used as the ‘best available’ data (unquestioned conventional wisdom!). 

There is therefore no framework to either quantify uncertainty or use it in the 

various decision making processes. There are likely to be other situations around 

the world where similar problems exist. It has been argued elsewhere in this 

thesis that quantification of uncertainty should lead to increased information for 

the decision maker, and more reliable outputs. It is also prudent to note that 

unless uncertainty is properly incorporated and quantified, it will be difficult to 

properly understand the reliability of model results and model-based decisions.  

 

The science of the natural environment is an uncertain science. Practitioners 

cannot make predictions for practical problems without significant uncertainty in 

representing the processes involved. In catchment management, this inherent 

uncertainty is exacerbated by the additional complexities of future climate 

change. The complexity and uncertainty inherent in water resources estimation 

tools ought be considered and managed in an appropriate manner for increased 

confidence in model-based decisions. Beven (1989) has pointed to the limitations 

of the current generation of rainfall-runoff models and argued that the possible 

way forward must be based on a realistic assessment of predictive uncertainty. To 

adequately address uncertainty in hydrologic modelling, there are three distinct 
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yet related aspects to be considered: understanding, quantification, and reduction 

of uncertainty (Vrugt et al., 2005). While many uncertainty analysis tools exist 

internationally, it is also prudent to accept that the majority cannot be laterally 

transferred into the region without substantial modification. It is therefore 

imperative to develop ‘local’ methods suitable for the data conditions (quality and 

accuracy) and assessment tools obtaining in the region. Public discourse and 

policy decisions within the region are shaped by model results without 

consideration of the uncertainties inherent in these results since stakeholders 

usually contend that total accuracy is not a pre-requisite for decision making. 

However, quality and utility of model-based decisions are enhanced by 

incorporation of uncertainty. A consideration of uncertainty and its proper 

communication to both decision makers and stakeholders should improve those 

model-based decisions. This study therefore investigates the incorporation of 

parameter estimation uncertainty, one of the important sources of uncertainty in 

the generation of stream-flows using the Pitman model. It also hoped that the 

protocols for uncertainty incorporation developed in this study will be flexible 

enough for use with different model structures and, therefore, provide a 

consistent framework for model application and/or analysis in the region. The 

procedures developed in this study should contain a common platform for model 

application and produce consistent outputs. This study therefore attempts to 

contribute to the discourse on bridging this information gap and improving water 

resources assessments and decision making in the region. 

 

1.2 Research questions of the study 

 

This study is guided by, and seeks to provide answers to, the following two sets 

of questions:  

• How can models provide useful information that can be successfully 

used for decision making in southern Africa given the data scarcity 

situation? 

 

This is the primary question that seeks to address model prediction uncertainty 

quantification in the face of inadequate data which is a typical problem in many 

basins in the region. The aim is to incorporate this into the decision making 

process. Notwithstanding data shortages, water-related developments still have 

to take place for social and economic development. The risks associated with this 

approach are unknown but there are real chances of sub-optimal use of resources 
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based on conservatism in planning. This is one example of decision making using 

imperfect information. It is therefore imperative that the information content of 

model results be improved and one way of achieving this is by incorporating the 

uncertainty into the modelling process. Such an approach would reveal the 

limitations of scientific understanding and the data used to guide the modelling 

process and inform the extent of confidence that can be expressed in the outputs.  

 

The secondary question, which is a corollary of the first, is: 

• What is the best approach for regionalizing water resources 

assessments in ungauged basins in southern Africa that will help to 

achieve a harmonized and consistent water resources management 

framework? 

 

This secondary question recognizes that the assessment of water resources in 

southern Africa has been based on many tools, most imported from outside the 

region. The results of these studies have at times been difficult to collate 

especially given the diversity of tools that have been used. From the Flow 

Regimes from International Experimental Network Data (FRIEND, Hughes, 1997) 

project it is clear that, while it is acknowledged that such studies existed, access 

to the results was often difficult. This study therefore chooses to use the Pitman 

(Pitman, 1973; Hughes et al., 2006) model which has been used extensively 

throughout the region since its large scale introductory application outside South 

Africa. Since then the Pitman model has enjoyed relative success in simulating 

the vast ranges of physical conditions obtaining in the region.  

 

The subsidiary questions that will support this secondary question, and related 

specifically to the Pitman model, are: 

• Can model parameters be defined in a physical manner that is 

consistent with physical hydrology principles? If so, what relationships 

exist between the parameters and the physical basin characteristics? 

• What appropriate sources of data can be used to aid the parameter 

estimation procedures? 

• What are the major sources of uncertainty in the parameter estimation 

process and what is the result of local model parameter estimation 

uncertainty on the regionalization result? 

• How is local parameter uncertainty propagated into predictions in 

ungauged basins and what is the result? What ranges of physical basin 

property details give acceptable ranges of hydrological output? 
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• How can the results be used to develop guidelines for the application of 

the model? 

 

1.3 Aims and Objectives of the study 

 

The intended ultimate goal of a study of this nature is to contribute to the 

development of an uncertainty framework for the application of the Pitman 

rainfall-runoff model that includes a priori parameter estimation and that can be 

applied in any basin, gauged or ungauged, in southern Africa. This study will 

produce a revised and improved parameter estimation protocol that directly 

incorporates uncertainty for use in southern African basins under different 

climate, topography, geology, soils, vegetation, data availability and data quality 

conditions. The key is to develop parameters that produce levels of model output 

uncertainty that can be useful in decision making. Thus, based on the questions 

outlined in section 1.2 and the overall aim stated herein, the specific objectives of 

the study are:  

 

i. To develop and test parameter estimation procedures for the 

parameters of the Pitman model. This study is a component of the 

author’s ongoing research and part of the work on parameter estimation 

procedures for some of the parameters of the Pitman model was tackled 

as part of a Master of Science (MSc) project (reported in Kapangaziwiri, 

2008). The previously developed procedures parameters were for the soil 

moisture accounting (ST), runoff (FT, POW), recharge (GW, GPOW) and 

infiltration (ZMIN, ZMAX) components and were successfully tested in 

many basins in southern Africa. The results showed that the conceptual 

framework and the estimation principles used for the development of the 

parameter estimation procedures were robust and hydrologically sound. 

The simulations were successful in all basins tested in South Africa, 

Botswana, Mozambique, Zambia and Zimbabwe. Based on these 

encouraging results, a decision was taken to extend the same estimation 

principles to the remainder of the calibration parameters of the model.  

ii. To identify appropriate sources of physical property basin data 

available in the region that can be used for parameter estimation. 

There are various sources of data that can potentially be used in a study of 

this nature. However, the aim of the study is to identify information 

sources that are readily available in many parts of the region without the 

need to invest heavily on resources to acquire new data. Such information 
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pertaining to, inter alia, geology, relief, slopes, soils, evaporation and 

rainfall estimates are generally available in the region and can be used as 

a basis for development of the methods. It is recognized that the same 

types of information will not be available consistently across the region 

and that the level of detail and quality of the available data will vary. 

Differences in detail and quality are therefore expected to contribute to the 

uncertainties in the data used in the parameter estimation process, which 

leads to the next specific objective.  

iii. To develop procedures to include uncertainty into the parameter 

estimation process. These procedures are expected to take cognizance 

of the fact that the estimation equations are not perfect and neither are 

the input physical property data. The a priori estimation methods pursued 

in this study are expected to be affected by the quality and detail of the 

basin physical data that are available. Identification of the various 

potential sources of error is important in determining the level of reliability 

in the parameters and the resultant model simulations, and the design of 

possible intervention measures such as improved data collection methods.  

iv. To assess the uncertainty in the parameter estimation process by 

comparing model outputs with alternative measures of catchment 

behaviour response.  It is expected that some measure of catchment 

functional (or response) behaviour will be developed to condition model 

outputs in the absence of observed flows. The rationale is that if the 

approach is to work for ungauged basins there has to be a control for 

assessing model performance, a function which is performed by observed 

flows in the case of gauged basins. Without such a model conditioning 

criterion, it would be difficult to accept and/or reject any model outputs in 

an ungauged basin and the approach would inevitably fail.  

v. To carry out a comprehensive assessment of the uncertain 

parameter estimation process using sensitivity analysis and to 

identify where improvements are required in the estimation 

process. The sensitivity analysis is essential to test some of the 

underlying assumptions of, and the process representations in, the 

parameter estimation processes. The sensitivity analysis is expected to be 

simple and used to identify the parameter variations across different 

conditions (e.g. climate zones) for feedback to the estimation process.  

vi. To make recommendations about the use of the proposed 

uncertainty framework for the Pitman model and where further 

work has the potential to improve the approach. The idea is to 
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assess how the Pitman model can be used in the proposed uncertainty 

framework. It is expected that some components of the framework may 

need improving or that the Pitman model may not work well in some 

areas. These will need to be highlighted wherever possible so that 

necessary future efforts can target these for improvement. 

 

1.4 The study area 

 

The ultimate intention of the study is to cover the southern African region. Part of 

the motivation is that the sub-region needs to adequately ascertain its water 

resources availability, and with increasing demand on water resources expected 

in the future such a study is imperative for planning, management and 

development purposes. With the exception of South Africa, the current 

information on water resources availability in the region is at best piece-meal, 

and covers only a relatively small gauged part, with very little being known about 

the resource in the ungauged basins. Where such information is available, 

experience has shown that this has been derived from a multiplicity of methods 

which makes common understanding and interpretation of results very difficult. 

Also the region hosts a number of trans-boundary river basins which demand 

commonality in resource assessment techniques/criteria and negotiated decision 

making. A common understanding is therefore a prerequisite to a region-wide 

water resources assessment exercise to achieve the objective of the Regional 

Water Sector Programme of SADC for “equitable and sustainable access to water 

resources - improvement in regional integration and economic benefits for 

present and future generations of southern Africa” 

(http://www.sadcwater.com/index.php). The reliability of the model predictions 

also needs to be improved so as to curtail liabilities due to conservative over- or 

under-designing. Water resources decisions in the region are frequently based on 

model outputs whose uncertainty has never been quantified nor analysed. Given 

the large disparities in data availability and quality across the sub-region, the 

development of the uncertainty framework reported in this study will initially be 

based on datasets from South Africa with the intention of extending the work to 

other parts of the sub-region later. 

 

Brief description of the southern African region 

The climate of the southern African region is very diverse with arid conditions 

experienced along the western ring (in Botswana and Namibia), and more humid 

temperate sub-tropical conditions in the south-western and north-eastern parts of 
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South Africa, northern and western Mozambique, eastern and central Zimbabwe, 

north-western Zambia, Northern and Central Democratic Republic of Congo (DRC) 

and central Malawi. The mean annual precipitation (MAP) and the mean annual 

evapotranspiration (MAE) indicate the diversity of climate (Figure 1.1). Figure 1.1 

shows that the spatial distribution of precipitation is not even, with a steep 

gradient from north to south and from east to west, with South Africa, Botswana, 

Namibia and Zimbabwe receiving an annual total of less than 800 mm. 

 

A. Mean annual evapotranspiration (MAE)       B. Mean annual precipitation (MAP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The distribution of mean annual evapotranspiration (MAE) 

and mean annual precipitation (MAP) over southern Africa. 

The MAP is based average data for the period between 1950 

and 1989, (Nicholson et al., 1997). 

 

The runoff coefficient for the region is generally quite low, except for the central 

parts of the Congo River basin in the DRC. Southern Africa's hydrological regime 

is characterized by high variability and low runoff coefficients with less than 15% 

conversion of mean annual precipitation (MAP) to mean annual runoff (MAR) 

known to be present across large parts of the region (Walmsley, 1991). The relief 

of southern Africa is equally varied from relatively flat, near sea level areas (in 

the coastal areas of Mozambique, Namibia, Angola, Tanzania and Mozambique) 

through undulating topography (in Zimbabwe, Botswana and Central DRC) to 

steep topography basins in the mountain areas of the region.  
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Geologically, most of the region is underlain by an assortment of Precambrian 

formations which are quite deeply weathered, or substantially fractured, rocks of 

volcanic and metamorphic origin and also large portions of sedimentary rock 

formations. For instance, from the 1:1 000 000 geological map of Zimbabwe 

(Rhodesia Geological Survey, 1971) most of Zimbabwe is covered by massive 

granites of the gneissic form, while  most of the Kafue River system flows on 

granitic forms of one description or other (Burke et al., 1994). The other major 

forms of geology in the region are the Karoo and Transvaal groups of sedimentary 

formations consisting of inter-bedded sandstone, shale and mudstone. For 

example, the coastal low lying parts of Mozambique (Direccao Nacional de 

Geologia, 1983), Western Angola and Eastern Botswana are lowland sedimentary 

basins, as are the North-Eastern and Western portions of South Africa which are 

derivatives of the Karoo system. At the other end of the spectrum are portions of 

the region that are underlain by one type or another of the metamorphic rock 

forms, e.g. the ultra-metamorphic rocks in North-Eastern South Africa (where the 

Sabie river flows, Department of Mines, 1970) and the mafic or acid meta-

volcanics or meta-sediments of the central, northern and eastern parts of 

Zimbabwe (Rhodesia Geological Survey, 1971). 

 

The Food and Agricultural Organisation (FAO, 2003) soil maps show that gypsisols 

and ferralsols quite dominate the substantial part of the region (Figure 1.2). The 

former cover portions of South Africa, Namibia, Botswana and Angola, while the 

latter cover substantial portions of Zambia, Malawi and the DRC. Gypsisols are 

soils with an accumulation of secondary gypsum and ferralsols are deep, strongly 

weathered soils with chemically poor, but physically stable subsoil (FAO, 2003). 

The other soil types in the region are lixisols covering a large part of Zimbabwe 

and Mozambique, durisols (Western South Africa and eastern DRC) and planosols, 

covering some eastern parts of South Africa, and some gleysols in the western 

parts of Zambia and northern DRC. Lixisols are described as soils with subsurface 

accumulation of low activity clays and high base saturation, while durisols are 

silica rich soils. Planosols are soils with bleached, temporarily water-saturated 

topsoil on slowly permeable subsoil and gleysoils are saturated at the surface 

(FAO, 2003). 
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Figure 1.2 The distribution of soils distribution in southern Africa (FAO, 

2003)  

 

1.5 Structure of the thesis 

Beyond this introductory chapter, the theoretical background on the uncertainty 

related to hydrological predictions in ungauged basins is covered in Chapter 2. 

Chapter 3 introduces a framework of incorporating uncertainty that is proposed 

for southern African basins. The development of the parameter estimation 

procedures and the incorporation of uncertainty into these procedures are fully 

described in Chapter 4. Chapter 5 discusses the development of the indices of 

hydrological behaviour that are used to condition model simulations in an 
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uncertainty framework. A number of tools, either new or modifications of existing 

ones were developed to support the framework and are described in Chapter 6. 

Chapter 7 is a presentation and discussion of the results of the study based on 

selected South African sub-basins. The overall conclusions and recommendations 

are summarized in Chapter 8.  
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CHAPTER 2  

HYDROLOGICAL PREDICTION UNCERTAINTY IN 

UNGAUGED BASINS 

 

2.1 Introduction 

 

Rainfall runoff modelling has grown in leaps and bounds since the late 1960s and 

early 1970s. These periods experienced a growth in model building buoyed by the 

advent of computers. Consequently, our ability to numerically model natural 

systems has progressed enormously over the past few decades (Oreskes, 2003). 

Allied continuous developments in computational power have resulted in the 

capability to consider and model more detailed and fine resolution processes 

(Silberstein, 2006). However, it is necessary to take stock of the development of 

the science of hydrology and hydrological modelling and evaluate the progress (or 

lack thereof) that has been attained to the present day. This is necessary for two 

reasons. Firstly, the issue of ungauged basins has brought to the fore the 

importance of data. For purposes of economic and social development, it has 

become increasingly significant to forecast water quantity and quality at all scales 

from the local (point) to the regional (meso and macro) scale including areas 

where data are not available. This has made regionalization one of the major 

issues in hydrology. The other reason is more concerned with the development of 

hydrology as a science and the improvement of our understanding of natural 

phenomena. The philosophical basis of the modelling approach is the desire to 

describe the processes in as physically-realistic a manner as possible, given the 

availability of data (Oreskes and Belitz, 2001; Dornes et al., 2008) and, thus, 

discover general laws and principles that govern these phenomena. Models are 

therefore complex assemblages of multiple hypotheses of environmental 

processes whose utility needs to be established against available data (in Gupta 

et al., 2008). Methods to evaluate and test these models must be diagnostic in 

nature (i.e. must provide insight into the degree of realism achieved by the 

representation and direction as to possible improvements necessary for the 

model, Gupta et al., 2008) if any hydrological learning is to take place.  In many 

cases such an approach would favour the construction of more parsimonious 

models, with fewer components and number of parameters. This is, however, at 

variance with some practical applications that demand detailed process 

representations  capable of responding to environmental setups that are not only 

complex but do not lend themselves easily to lumping. Whatever the 
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representation taken for environmental processes, the preservation of physical 

hydrology principles in hydrological modelling cannot be over-emphasized 

(Kapangaziwiri, 2008). After forty years of model development, it is clear that 

within the hydrology community, in spite of all the complex models available, 

there are still significant gaps in the knowledge of the rainfall-runoff transfer 

processes (Wagener et al., 2004). This is mainly because of constraints of 

knowledge and computing capabilities, limited measurement techniques, scale at 

which measurements are taken (which is different from the scale at which they 

are required for application) and observational limitations of some processes 

(Beven, 2002; 2006). This has resulted in most models, not withstanding the 

degree of sophistication, being essentially black box in nature with a higher 

degree of conceptualization than physical basis (Oreskes, 2003; Montanari, 

2004). In many cases the same inputs do not result in the same outputs for 

different models, which compromises their global applicability. On the other 

extreme, very different values for the same property are necessary for different 

models even in the same locality. This kind of attribute makes modelling a 

precarious tool especially in the hands of inexperienced users. It is also a fact that 

model performances in ungauged basins have been less than satisfactory or 

reliable. Nash and Sutcliffe (1970) once remarked that “few hydrologists would 

confidently compute the discharge hydrograph from rainfall data and the physical 

description of the catchment” and that “this is a practical problem” (pp. 282) that 

hydrologists face in the field. These sentiments still carry some weight to this 

day.  

 

While the foregoing assessments about modelling are quite negative and 

pessimistic, they are a necessary reality check on, and one view of, the science of 

hydrological modelling over these past few decades.  A more optimistic view is to 

accept the consoling realisation that contemporary hydrologists are better placed 

with regards hydrological modelling (development and application) than the 

pioneers (Oreskes, 2003). This has made it possible to make more satisfactory 

predictions and reliable forecasts. In addition, the science that is coming out of 

the prediction in ungauged basin (PUB, Sivapalan et al., 2003) initiative is giving 

tremendous hope to the hydrology community with respect to making predictions 

in poorly gauged basins. There is a concerted effort to develop new approaches 

that enable the construction of hydrological models that can be used for making 

predictions in both gauged and ungauged basins. The basis is that if a model is 

able to reflect the essence of hydrologic catchment functioning (for the full range 

of possible states), then it is possible to extrapolate with a higher degree of 
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confidence beyond the observed conditions and produce reliable predictions 

(Sivapalan, 2005). Admittedly, a lot of work needs to be done but the current 

crop of literature points to better methods being developed (for example Beven 

and Binley, 1992) to achieve reliability for practical and decision making 

purposes. However, the major problem affecting prediction in ungauged basins is 

that contemporary approaches are dependent to a great extent on 

regionalization, which is severely handicapped by several limitations (Yadav et al., 

2007). Chief among these is the dependence of regionalization on calibration in a 

number of gauged basins in order to establish relationships between calibrated 

parameters and basin attributes. In a region like southern Africa, there are 

inadequate data for such calibration. This highlights the importance of 

observations and lends credibility to the argument that decision making in, and 

management of, water resources does not depend on complexity of models (or 

the improvement of current models) without improvements in data collection 

because it is difficult to manage what has not been measured (Silberstein, 2006). 

This makes regionalization unlikely to work and demands that, while plans to 

boost measurement networks to (at least) the primary network levels, scientists 

develop methods that provide a way around dependence on calibration. It would 

be desirable if such methods would make use of incomplete (lots of missing data) 

and short observed historical records (both of which are not useable for normal 

calibration) that may be available in the region. 

 

One of the problems that has not received a lot of attention when considering 

modelling is the experience of the model developer and, especially, the user. In 

general it is true that for any relevant and sensible decision making, the use of 

models must be complemented by sound scientific judgement based on field 

experience and/or observations. It is thus imperative that a model user has 

sufficient background in hydrology (and perhaps modelling?). This is necessary to 

ensure that the user is cognizant of the limitations of the model they are using 

and also the hydrologic complexities of the field conditions in the basin under 

study (Anderson, 1983). Anderson (1983) contends that institutionalized ‘black-

boxing’ of models without this education to gain the necessary experience could 

be hazardous. This quotation from Anderson aptly summarises the importance of 

a sound grounding in hydrology; “Applying a model is an exercise in thinking 

about the way a system works. Automating a modelling exercise to the extent 

that the model can be used by someone lacking the necessary background in 

hydrology destroys the essence of modelling. It is the thought process needed 

when applying a model that should lead to a decision, not necessarily and 
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certainly not exclusively the answers generated by the model itself”. The model, 

regardless of sophistication, remains a tool that can be manipulated to aid 

decision making. Also, successful model development depends on a clear 

understanding of the hydrologic conditions of the field area, lack of which often 

leads to models that are based on inappropriate assumptions of what actually 

occurs in the real world (Watson and Burnett, 1995). This is one of the major 

sources of uncertainty which, fortunately, can be addressed quite easily. However 

this is a problem in Southern Africa where resources (both human and financial) 

are in short supply (Hughes, 2004b).  

 

In the endeavor to make precise predictions of river flow in any ungauged basin 

(and a huge amount of basins the world over are virtually ungauged), there is 

muted consensus in the hydrology community that such a feat may never be 

accomplished (Meixner et al., 2004). However, what has emerged as a significant 

constituent to the understanding of the problem of making predictions in 

ungauged basins is how uncertainty ought to be treated (Chapter 3).  A better 

understanding of uncertainty is likely to result in better interpretations of the 

resulting model predictions, regardless of the data situation of the basin. Thus, it 

has become a focus of hydrological modelling to investigate the possible sources 

of uncertainty, quantify this uncertainty and assess its impact in hydrologic 

predictions. The philosophy being employed here is that hydrological flux 

predictions are impacted to varying degrees by uncertainties and an 

understanding, and more importantly, a reduction of this uncertainty should lead 

to better, consistent and more reliable predictions.  

 

2.2 Uncertainty 

 

2.2.1  Introduction 

 

The science of hydrological modelling is a discipline in which considerable 

uncertainty is inherent. Over the past two decades, in response to the increasing 

need to make predictions in ungauged basins, it has become unavoidable to 

consider uncertainty in hydrological research. Beven (1989; 2002) discusses the 

shortcomings of the current rainfall-runoff models and argues that, to take the 

science forward, hydrological modelling has to be based on a realistic assessment 

of predictive uncertainty. According to Chow (1979), uncertainty can be defined 

as the occurrence of events that are beyond man’s control. Uncertainty is a 
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measure of the 'goodness' of a result. Without such a measure, it is impossible to 

judge the fitness of the value as a basis for making decisions relating to scientific 

excellence (Refsgaard et al., 2007; Montanari and Brath, 2004; Montanari, 2007). 

It is caused by a number of fairly typical factors which are discussed in Section 

2.2.2. Uncertainty can be classified into stochastic or epistemic uncertainty 

(Walker et al., 2003). The former refers to the uncertainty related to the natural 

variability or randomness inherent in all environmental systems. Natural 

phenomena are influenced by random variability which is usually reflected in 

historical observations. This variability is irreducible irrespective of advances in 

measurement technologies. In water resources projects it is a common practice 

by engineers to adopt design floods whose return periods are greater than the 

design lives of the project in an attempt to accommodate this type of uncertainty. 

On the other hand epistemic uncertainty is related to the quantity and quality of 

the knowledge (both data and processes or systems) available. These quantities 

can be improved by more research and advances in measurement techniques to 

acquire more and better (e.g. higher resolution) data. Thus, epistemic uncertainty 

can be reduced. One of the issues related to this class of uncertainty is that even 

where perfect processes and system knowledge exist, other factors may come be 

important especially in modelling, e.g. it may not be possible to parameterize the 

model to sufficiently account for all the possible system conditions irrespective of 

the ‘perfect’ model. However, there are processes that hydrologist know very 

little about and may never be able to know (Beven, 2006). This makes epistemic 

uncertainty an integral part of environmental modelling.  

 

In the discussion of uncertainty it is prudent to distinguish between uncertainty 

and variability, as these two are not synonymous. Variability is an inherent 

property of the constituent physical system and model components and it cannot 

be reduced by collecting more data. This can only be quantified by statistical 

analyses of data collected from the system. On the other hand, uncertainty is 

usually a limitation imposed by a lack of knowledge. Some uncertainties in 

variables or systems can be reduced (but rarely eliminated), either by improving 

the methods of measurement and analysis or by improving the formulation of a 

model. There are many reasons why modelling uncertainty has dominated 

attention in the hydrology community such as:  

� The paucity of data due to financial and time constraints 

� Heterogeneity of the earth surface leading to variations of some 

components or processes through many magnitudes over relatively short 

distances. 
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� The failure to achieve unique optimum model simulations through 

calibration with many different parameter combinations and conceptual 

models successfully reproducing observed response. This is the problem 

known as equifinality (Beven, 2001). 

� The disparity in the scales (both temporal and spatial) of model operation 

and process observation unavoidably leads to averaging and therefore loss 

of physical integrity of models.   

 

Uncertainty is important in modelling as it can be linked to such concepts as 

reliability, safety, risk-based design, etc. One needs to appreciate that 

uncertainty per se is not something negative but it turns into something negative 

when scientists and/or water practitioners fail to estimate or take it into account 

(Kinzelbach et al., 2003). This emphasises the utility of uncertainty assessments 

in decision making by water resources practitioners. 

 

2.2.2 Sources of uncertainty 

 

There are many different stages in the model-based water resources assessment 

process at which uncertainty manifest. From Melching (1995), Walker et al. 

(2003), Brugnach et al., (2008) and Gupta et al. (2005), the potential sources of 

hydrological modelling uncertainty can be summarised as the following: 

 

Input uncertainty (quantity and quality): The data used to force the model (e.g. 

rainfall and evaporation) and for calibration (e.g. river flow) are almost always 

imperfect due to measurement errors. These imperfections pervade the model 

application and parameterization process. Input uncertainty is not only a result of 

spatial heterogeneity (Brugnach et al., 2008). Errors in empirical observations 

(both random and systematic errors) usually lead to significant differences that 

may exist between the real value of a quantity and the one eventually used in the 

model. For reasonably reliable model results, the reference time series of river 

flows should span the whole spectrum of possible hydro-climatic conditions (i.e. 

wet and dry, high and low flow periods, etc). Without such coverage (associated 

with shorter time periods) it would be impossible to account for all the possible 

model responses and therefore get appropriate parameter values. However, while 

the issue of data length necessary for parameter identification is important 

(Gorgens, 1983), the requisite length is inevitably a product of data quality, 

complexity of the model and climate variability (Yapo et al., 1996). Besides the 

adequacy of the modelling data, the quality of these data is also important. Data 
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that have a lot of missing values, whatever their length, are not suitable for use 

in modelling (Mazvimavi, 2003) and will increase uncertainty in the parameter 

estimation process. The impact of missing data depends on the loss of 

information on the time series data. There is also an impact of the temporal 

resolution of the model on its parameterization which suffers would suffer if there 

is significant loss of information due to missing values. Notwithstanding advances 

in data collection platforms and model construction due to better process 

understanding and improved computing power, input uncertainty is expected to 

continue to be significant in hydrological modelling due to the high spatial and 

temporal variability of precipitation which are not easy to adequately incorporate 

(Kavetski et al., 2006). 

 

Context and framing: The context of any modelling exercise is determined at the 

initial stages of any project, even before a structure is chosen. This identifies the 

problem to be solved. There is therefore potential uncertainty associated with the 

subjectivity incorporated in defining the modelling activity. This is influenced by 

the experiences, interest and values of the modeller. In many cases, there is also 

the influence of ambiguous and conflicting knowledge, where information could be 

understood with different meanings or may explain contradictory facts. Often a 

lack of consensus in theory may result in uncertainty related to the context and 

framing of models (Brugnach et al., 2008). 

 

Model structure uncertainty: this relates to the uncertainty associated with the 

model form and is caused by incomplete understanding and simplified 

descriptions of modelled processes as compared to reality. Models, by their 

nature, are simplifications of the complex reality and there are bound to be gaps 

and compromises in knowledge and the representation of process (Beven, 2001) 

and their parameters are, in most cases therefore, just effective averages over a 

large area which is an integral of several processes and their variability 

(Bergstrom, 1991). Even assuming a perfect observed response at the sub-basin 

outlet, it would still mean that the model structure would produce uncertain 

parameters. This is due to the complexity and variability of environmental 

systems. The resultant unpredictability makes model applications sensitive to 

boundary and initial conditions. There is an element of subjectivity in the 

development of a model structure. Ignorance (inadequate, imperfect information) 

is another influence on model structure. Beven (2002; 2006) contends that there 

are aspects of environmental systems (for example subsurface flow movements) 

that hydrologists are not confident about. Process representation of these aspects 
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in models is bound to be less than perfect, requiring calibration to match to 

observations. In reality it is also possible to get different parameter values (by 

calibration) for the same physical property from different model structures in the 

same basin. This underlies the significance of model structure (and underlying 

principles, modelling philosophy and assumptions) in conditioning the 

parameterization of a model. This is irrespective of the complexity of the model 

and claims of models being guided by physical principles. In this study a single 

structure is used since it was not part of the project objectives to assess 

uncertainty due to the model structure. The model structure uncertainty will 

therefore be assumed to be systematic. However, it is acknowledged that this will 

not always be case, especially where response characteristics change through 

time, or between catchments when comparing uncertainties between different 

catchments.  

 

Model technical uncertainty: Operationalising the conceptual model (Beven, 2001) 

requires the development of necessary mathematical equations which will be 

transferred into a computer code. This uncertainty therefore refers to the 

uncertainty arising from development of a relevant computer code to implement 

the model. Uncertainty could therefore be a result of inevitable numerical 

approximations, resolution in space and time and bugs in the software. 

 

Parameter uncertainty: This relates to the inability of the model structure to 

locate a unique optimum (or ‘best’) parameter set given the information available 

(Wagener and Gupta, 2005). Parameter estimation in rainfall-runoff models is 

affected by uncertainties in the observed historical forcing (e.g. rainfall, 

evapotranspiration) and/or basin response (typically runoff) data and model 

inconsistencies. The data errors from various model inputs are likely to be 

propagated to the model outputs resulting in bias and misrepresentation. This 

leads to unreliable model results affecting the whole chain of water resources 

decision making. It should also be noted that even if a unique solution were to be 

obtained there will be uncertainty in the parameter quantities. This is due to 

propagation of uncertainty through the model and the objective function, 

resulting in a comparison of uncertain quantities. The result is uncertainty in the 

value of the objective function, and hence uncertainty in the optimal parameter 

set. The Heteroscedastic Maximum Likelihood Estimator (HMLE, Sorooshian and 

Dracup, 1980) objective attempts to address the issue of uncertainty in the inputs 

to the objective function. Due to the high variability of rainfall in both space and 

time it is likely that input errors are likely to persist into the near future. This is in 
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spite of advances in data collection and model construction (Kavetski et al., 2006; 

Beven, 2001). The errors in the observed response data usually impact the 

calibration of the model. Model calibration depends entirely on the accuracy of the 

reference observed data, whose accuracy is in many cases difficult to guarantee. 

This influences the resulting parameter sets and the uncertainties will be 

propagated into any other processes dependent on the model results, e.g. 

catchment yield estimations and model regional applications. It is important to 

note that the method chosen for parameter estimation (model parameterization) 

has an impact on the resulting parameter sets. The problem of parameter 

uncertainty is more acute in ungauged and/or poorly gauged basins where there 

are no reference historical observations to guide parameter estimation (Wagener 

and Wheater, 2006). As parameter estimation is very important in model 

calibration and application in water resources estimation, reduction of parameter 

uncertainty is therefore critical to improve confidence in the use of model results.   

One simple way of reducing parameter uncertainty (and indeed uncertainty in 

general) would be to design less complicated, parsimonious model structures with 

a small number of parameters (e.g. Young et al., 1996; Perrin et al., 2003) which 

can be concisely defined physically. However, caution needs to be exercised in 

choosing the number of processes to be represented as too simple a model 

structure may be impossible to use outside the range of conditions for which it 

was calibrated (Wheater, 2005). Another way to counter parameter uncertainty is 

to increase the amount of information available to identify the parameters, e.g. 

increasing the number of output variables (Gupta et al., 1998). The success of 

this approach is dependent on the ability of the model structure to handle this 

extra load (Wheater, 2005; Beven, 2001). On the other hand the improved use of 

information already available to improve parameter identifiability is another 

alternative. For instance, different periods can be used to identify different 

parameters. This represents a multi-objective calibration approach for estimating 

model parameter values and evaluating model structural deficiencies (Gupta et 

al., 1998; Madsen, 2000; Wagener et al., 2001). Another approach to reduce 

parameter uncertainty is the use of a priori parameter estimation methods (Ao et 

al., 2006; Koren et al., 2004). The major attraction of this approach is that it 

manages to avoid the uncertainties related to the observed input and output data 

and, regionalization methods and relationships (Kapangaziwiri, 2008). However, it 

may be subject to uncertainties related to the physical basin property data. The 

approach taken in this study is to estimate parameter uncertainties in relation to 

expected uncertainties (expressed by variability) in the measurement of physical 

basin characteristics. In general the uncertainty in the parameter estimation 
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process can be attributed to a variety of sources including (see for example 

Wagener and Gupta, 2005; Ao et al., 2006): 

 

� The quantity and quality input of data: (discussed earlier)  

� The structure of the model: (discussed earlier). 

� The choice of initial parameter boundaries: Parameter ranges are chosen 

to constrain the parameter space during optimization so that all possible 

models (model structure and parameter set) are included. If the 

parameter ranges are too restricted, acceptable models may be 

erroneously rejected, whereas if they are too wide the parameter 

quantities may cease to be meaningful or result in unnecessary model runs 

(Beven, 2001). 

� The choice of model performance and evaluation criteria: The issue of 

assessment criteria of models has been discussed extensively in the 

literature (see Nash and Sutcliffe, 1970; Freer et al., 1996; Gupta et al., 

1998; Liden and Harlin, 2000). The choice of objective functions for model 

performance and the algorithms for optimization evaluation affect the 

resultant parameters. It is also true that parameter values can vary with 

the type of objective function used for optimization (Sefe and Boughton, 

1982). In many cases when a single objective function is adopted multiple 

and equally acceptable parameter combinations are possible. This non-

uniqueness of model parameterization, resulting in many parameter sets 

that are equally good according to the assessment criterion, is known as 

equifinality (Beven, 1993; 2001). This is a product of interactions of 

parameters within the model, making parameters a lot less identifiable. 

Interactions between and among parameters should, however, decrease 

with an increase in the parsimony of the model structure (Spear et al., 

1994).  

 

The close association between parameter uncertainty and equifinality has resulted 

in substantial consideration in the literature over the past decade where 

alternatives to the equifinality concept have been offered (e.g. Gupta et al., 

1998; Thiemann et al., 2001; Vrugt et al., 2003a; 2003c). The alternatives 

advocate the finding of an optimal parameter set through the use of Pareto (e.g. 

Yapo et al., 1998) or Bayesian (Boyle et al., 2000) methods in global and multi-

objective algorithm uncertainty estimation. While these attempts are noble, in 

practice model calibration still shows that more than one model (structure and 

parameter set), rather than just a single optimum, can be acceptable due to 
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uncertainty. The notion of an optimal parameter set is considered both unwise 

and unpalatable especially when considered against uncertain model forcing data, 

model structures and incomplete and limited process understanding (Beven, 

2006). It seems indeed futile to expect imperfect representations to produce 

perfect results. The logical and practical approach in the meantime is to learn to 

live with the inherent uncertainties in modelling and assess how water resources 

decisions can be made in the presence of these uncertainties. In the long term, 

efforts to deal with the sources of uncertainties that can be reduced should be 

vigorously pursued.  

 

It is a fact that uncertainty affects modelling results and their reliability and the 

confidence that can be expressed in them (Uhlenbrook et al., 2004: Siebert and 

Beven, 2009). In practical applications of modelling, uncertainty significantly 

limits the use of models for such purposes as parameter regionalization or making 

predictions beyond the gauged circumstances, such as generating land-use or 

climate change scenarios (Melching et al., 1990; Harlin & Kung, 1992; Seibert 

and Beven, 2009). Consequently, one of the major goals in environmental 

modelling has been the identification and quantification of sources of uncertainty 

in the modelling process.  The total uncertainty in the model simulations, global 

model uncertainty, can only be comprehensively assessed if/when uncertainty 

propagation through the model manages to take into account all the possible 

sources. In practice, however, this may not be possible for various reasons, chief 

of which is the availability of the necessary data to adequately characterize and 

describe these uncertainties. The need to account for uncertainty in hydrological 

modelling is leading towards some sort of shift in the philosophy of model 

applications, from procedures that focus on the identification of a single best 

model towards procedures that seek to reduce the uncertainty in the predictions 

of all possible models using various types of ensemble methods. Wagener et al., 

(2006a) explain this as a move in hydrology from a philosophy of ‘‘optimization’’ 

towards one of model ‘‘consistency’’ which emphasizes the need to find models 

that are consistent with the behavior of the real world system. The necessity of 

making predictions in ungauged basins has given rise to a re-evaluation of the 

way in which water resources estimations can be carried out, especially in data 

poor areas. The current favoured route has been the production of model output 

ensembles of possible process descriptions for a basin rather than one hydrology 

time series as has hitherto been the norm. However, there is still a considerable 

part of the hydrology community that favours optimality. 
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It seems that the science of considering uncertainty in environmental modelling 

will be a topical issue into the foreseeable future. While the simulation of water 

resources is quite advanced, it still remains difficult in many cases to confidently 

announce results as accurate. It is safe to accept that modellers and model users 

may never be able to know if their model results are accurate (Hughes, pers 

comm.). Uncertainty analysis should thus allow scientists to express the extent of 

their confidence in model results. The intention is to make better decisions in 

water resources management, planning and development. The incorporation of 

uncertainty into the generation of hydrologic predictions should provide decision 

makers with information that allows them to incorporate risk in decision making 

and therefore mitigate some of the social, economic and environmental impacts 

of inappropriate operating rules (Heuvelink et al., 2007; Ajami et al., 2008). From 

a more social perspective, it is professionally more honest (and safer for the 

modeller!) to present results including an estimation of uncertainty (professional 

integrity). While incorporating uncertainty into estimation tools may not be the 

easiest (nor the most convenient) of tasks, the consequences of ignoring it may 

be worse. Ignoring uncertainty could lead to unjustified confidence in hydrological 

and water resources estimations and predictions and a lack of appreciation of the 

risks associated with decision making in uncertain situations. If the extent of 

uncertainty in predictions is not known, then there is no incentive to improve the 

science of making predictions through improving data collection, parameter 

estimation approaches and the model structures.   

 

2.2.3 Modelling uncertainty and decision making 

 

Decisions about the exploitation and management of environmental systems 

require information about environmental variables. This has placed hydrological 

models at the centre of water resources (and other environmental disciplines) 

management as an invaluable source of information which is used as a basis for 

management and policy formulation. However, in spite of a relatively long history 

of the development and use of models in policy making there is still poor 

integration between modelling and the decision process (Maier and Ascough II, 

2006; Ajami et al., 2008). With the uncertainties related to the modelling process 

and the attendant risks related to the decisions based on model results, it is 

therefore necessary to explore the impact of modelling uncertainty on the 

decision making process.  
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Middlemis (2000) contends that there is “a perception among the end-users that 

model capabilities may have been ‘over-sold’, and that there is a lack of 

consistency in approaches, communication and understanding among and 

between modellers and water resources managers, often resulting in considerable 

uncertainty for decision making”. While this statement does not dispute the 

importance of modelling in generating valuable information, it puts into 

perspective the precarious relationship between modelling and decision making. 

Thus, in the decision making process, an acknowledgement and estimation of 

uncertainty constitute significant steps for establishing the merits or utility of 

model-generated data as an input (Dovers et al., 2001; Brown, 2004; Hughes 

and Kapangaziwiri, 2009) and for judging the credibility of decisions that are 

informed by these data (Beven, 2000). This should allay fears of over-selling of 

model capacities and inflated confidence in model outputs.   

 

Uncertainty is usually understood to be a critical constraint for the decision 

making process, and as such it has to be eliminated as much as possible. The 

major problem with uncertainty in decision making is that it refers to the situation 

in which there is not a unique and objective description of the system to be 

modelled. There is a need for scientists to determine clearly how uncertainty 

should be addressed and communicated for it to be effective as a decision making 

tool. Irrespective of the way this is done, uncertainty needs to be clearly captured 

in order to adequately indicate where gaps in knowledge and understanding are. 

When this happens, incorporation of uncertainty becomes an innovative way of 

scientifically analyzing and presenting available data and this is critical for 

decision making. Considering uncertainty also affords modellers a platform to try 

to find more robust solutions and avoid the problems with using a single optimum 

solution such as over- or under-designing which may have huge financial 

implications in engineering projects. It increases the confidence that can be 

expressed in the results of models and consequently the decisions based on them 

(Ajami et al., 2007). The chief aim of uncertainty analysis in terms of resource 

management is to improve decision-making under uncertainty, where one has to 

select the optimal action from a set of feasible alternatives (Wood and Rodríguez-

Iturbe, 1975; Marin, 1986). From a scientific viewpoint, uncertainty analysis is 

the key to improving understanding. To complete the process it would be prudent 

to also include a sensitivity analysis to test the robustness of the dominant 

alternative with respect to uncertainties in the prior probability distributions and 

modelling process. Uncertainty analysis should therefore help achieve both 
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decision robustness and expected utility (Caselton and Luo, 1992; Reggiani et al., 

2009).  

Uncertainty analysis can be taken as a resource to determine the range of 

plausible scenarios and can aid the understanding of the process of change in a 

given system. Rather than being viewed negatively, the incorporation of 

uncertainty, given the understanding of the limitations of scientific expert 

knowledge, in decision making improves not only the credibility of science as a 

basis for decision making but also the decisions themselves. However, from a 

practical point of view, decision making is possible when model predictions are 

constrained within manageable bounds. It should also be emphasized here that 

there is a need for managers to think about how they should manage resources in 

the presence of uncertainty. The question that should be answered by both the 

scientific community and practitioners when it comes to decision making under 

uncertainty is, “how much uncertainty can the decision/policy maker handle”? 

Such an approach questions the utility of the uncertainty bounds that may be 

delivered to the decision maker. If the bounds are too wide, then there would be 

too much information, meaning that the uncertainty would have been over-

estimated and it would be difficult for the decision maker to make any credible 

conclusions, while it may be equally difficult to utilise bands that are too narrow 

(Leamer, 1990). In the former case, decisions would tend to be conservative, 

while decisions based on the latter may tend to exceed their scientific credibility. 

Both have financial repercussions. Narrow bands around an observation may 

induce false confidence unless there is high confidence in the accuracy of the 

observation and/or the bands realistically represent the uncertainty. If the actual 

uncertainty is too wide to permit suitable decisions to be made, then it would be 

prudent to invest in better measurements and/or models. Leamer (1990) insists 

that the bands should “be narrow enough to be useful.” This entails that, for a 

successful contribution of the modeller to decision making, there is need for 

communication between and among scientists and all stakeholders (Hughes et al., 

2009). Science therefore has to balance between development of technical and 

formal methods to characterize and analyse uncertainty, and the communication 

with the stakeholders (in both bottom-up and top-down approaches) to determine 

the needs of decision makers (and improve relevance of their technical 

advancements, Maier and Ascough II, 2006). It is impossible for both groups to 

be highly knowledgeable about what the other does; decision/policy makers 

hardly understand models and modellers are not always conversant with the 

decision/policy process. Interaction is therefore important.  
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2.2.4 Estimating uncertainty 

 
Uncertainties cannot be completely eliminated and, at best, they can be reduced 

by better equipment, improvements of standard data collection procedures, 

denser networks and maintenance. Uncertainty analysis is carried out to 

determine the statistical properties of the output as a function of input stochastic 

parameters (Lioy, 2009). This helps find the contribution of each input variable to 

the overall uncertainty of the model output and can be used to reduce the output 

uncertainty. From a practical point of view, uncertainty does not cease to be a 

problem once it has been reliably quantified but the problem has been 

significantly reduced. For instance, the problem of finding and using an optimal 

solution becomes redundant when one successfully quantifies the uncertainty 

related to any solution. It is therefore necessary that scientists be able to 

estimate uncertainty. Successful quantification, ensured through testing in 

gauged basins, would increase the confidence of making predictions in ungauged 

or poorly gauged basins (van der Sluijs et al., 2005; Refsgaard et al., 2007). In 

theory the estimation of uncertainty is quite simple. In the ideal situation one 

would use the full joint probability distribution function (PDF) of all sources of 

uncertainty and propagate this through the model to the model outputs. This 

would give the full picture of uncertainty related to the modelling exercise. 

However, in reality such a joint PDF is impossible to estimate because the 

interactions between the inputs are never completely known. Thus, in practice the 

best case scenario is usually that the statistical/frequency characteristics of some 

of the inputs and parameters are estimated. The choice of these variables is 

determined by availability of data and ease of estimation of the PDF. The later is 

usually the most difficult part for most environmental variables. Consequently, 

global uncertainty estimation (i.e. estimation of uncertainty for the model output) 

should be achieved using confidence bands/intervals, prediction intervals, inter-

quartile ranges, variance (standard deviation) of or around the mean output 

(Montanari, 2004). Any representation of the form (x± y, where x is a mean 

value of output and y is a measure of uncertainty) is acceptable. If the confidence 

bands are wide (i.e. y is large), the output may not be a good approximation of 

the system behaviour, while it is a good estimate if the bands are narrow. In 

gauged basins, if the observed behaviour (assumed reasonably accurate) is not 

contained within the band of possible outputs, then the mean output is not a good 

estimate of system behaviour. While this is quite simple, the main question is 

how to achieve this estimation of uncertainty. There are two possible approaches 

to this problem – the conventional statistical approach or less formal methods 

(based on the principles of Bayesian statistics) dependant on largely subjective 
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probability treatment. Montanari (2007) emphasizes the point that “…when only a 

limited amount of information is available the expression of uncertainty in terms 

of probability is not possible” and argues that ”…much human reasoning about 

hydrological systems is possibilistic rather than strictly probabilistic”. This 

statement lends support to the use of less formal approaches to uncertainty 

analysis. 

 

The formal statistical approach, usually referred to as the frequentist approach, is 

dependent on the use of formal statistical probability methods and testing 

(including hypotheses testing). The frequentist method essentially focuses on the 

expected frequency of occurrence of the observed data from hypothetical 

replicates of sampling. Caution ought to be exercised, however, as with any 

conventional statistical analysis, it works well and is reliable with long observed 

records but is unreliable and uncertain with short ones. This therefore makes it 

impossible to directly apply in ungauged basins. The implication is that its indirect 

use in ungauged basins entails dependence on any one of the many 

regionalisation approaches currently available. Given the heterogeneity of the 

land surface, this is unlikely to be a good approach. The frequentist approach is 

based on the classical Laplace probability which contends that the probability of 

an event is the ratio of the number of favourable cases, compared to the whole 

number of possible cases when nothing justifies an expectation of any one of 

these cases occurring more frequently than any of the others (Montanari and 

Brath, 2004; Montanari, 2004). Thus, from a hydrological modelling standpoint, if 

there exist sufficiently large data sets of historical observations, this approach 

would enable the inference of the uncertainty of these data premised on 

stationarity of the underlying processes. In the absence of such data, as is the 

case in many basins of the world, conventional frequentist statistics would lead to 

erroneous interpretations and conclusions. 

The alternative that should work better for non-stationary physical hydrological 

processes and their deterministic modelling is a collection of less formal methods 

that are largely based on the fundamentals of Bayesian probability statistics. 

There has been growing tendency in hydrological modelling (especially in 

uncertainty estimation) to use these subjective methods due to the flexibility and 

subjectivity allowable with the approach. Typical examples of this approach are 

the use of fuzzy set theory and logic (e.g. Bardossy et al., 1990; Blazkova and 

Beven, 2002; Ozbek and Pinder, 2006), possibility theory (Cazemier et al., 2001; 

Mujumdar et al., 2009) and the Bayesian probability (e.g. Beven and Binley, 

1992; Krzysztofowicz, 1999; 2001). In the Bayesian methods prior knowledge 
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and new data are combined using a model to produce posterior knowledge, or to 

update knowledge. The Bayesian inference provides a different but robust 

philosophical approach to uncertainty estimation. Typical Bayesian statistics 

interpret the concept of probability as the degree of belief in (i.e. uncertainty 

about) the occurrence of an event (Spiegelhalter and Rice, 2009). The most 

significant difference between Bayesian methods and their likelihood-based 

counterparts is the incorporation of prior information/knowledge (based on 

observations or experience) about system variables using prior probabilities. In 

practical application of the Bayesian methods the prior probabilities are weighted 

and combined in a model to estimate posterior probabilities.  While conventional 

statistics are based on the probability of occurrence of the data “given that the 

various hypotheses are true” (McCarthy, 2007), the Bayesian approaches are 

based on interrogating the “probability of the hypotheses being true given the 

observed data” (McCarthy, 2007). While the use of prior knowledge is the 

strength and attraction of the Bayesian methods, the associated subjectivity has 

attracted criticism.  

 

For uncertainty estimation in hydrological modelling, use of Bayesian approaches 

is less restrictive and more appealing; hence the popularity of such approaches 

such as the Generalised Least Squares Uncertainty Estimation (GLUE) of Beven 

and Binley (1992). While historical observations of stream flow usually constitute 

the prior knowledge for the conditioning of flow simulations, one of the questions 

that may be relevant is the extent of incompleteness of a gauged record that can 

be used for this purpose (Seibert and Beven, 2009). Can the Bayesian approach 

be used to accommodate very short (or few data points that may have been 

taken at irregular intervals) data periods or data with many missing values, by 

allowing for the large uncertainty within the prior knowledge? Where no or 

insufficient data are available some other knowledge can be used within the 

Bayesian methods to define prior knowledge, e.g. use of hydrological response 

characteristics (Shamir, et al., 2005, Yadav et al., 2007), catchment similarity 

indices (Wagener et al., 2007), regionalization based on limited gauges (Bulygina 

et al., 2009) or a priori parameter estimation (Duan et al., 2006; Koren et al., 

2004). This presupposes the possibility of defining some formal probability 

distribution functions for these kinds of knowledge that can be used to constrain 

output uncertainties. One therefore supposes that an improvement in the 

knowledge should reduce predictive uncertainty. The approach taken in this study 

combines the use of a priori parameter estimation and regionalized indices of 
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hydrological response characteristics to constrain model output uncertainty 

(Kapangaziwiri et al., 2009).  

 

The advantages of the Bayesian approach are that it provides a theoretically 

consistent way of thinking about statistical decision making, allows the explicit 

modelling of uncertainty in parameters and provides a theoretically consistent 

framework for integrating information from local at-site historical observations 

with regional hydrologic information and data from other sources. The Bayesian 

approach suggests that supplemental regional hydrologic information should be 

incorporated through a prior probability distribution to augment the information 

provided by the gauged record for a site (Vicens et al., 1975b; Kuzcera, 1982; 

Stedinger, 1983). Unfortunately, the actual updating or integrating step is 

straightforward for only a few simple distributions, and the use of prior 

distributions is sometimes controversial (Watson and Burnett, 1995).  

 

Regardless of the approach adopted, most uncertainty estimation procedures are 

based on the following (Brugnach et al., 2008): 

� Define how to measure the level of consistency between the simulated 

(Qs) and observed (Qo) system behavior 

 

Qo = Qs + εo 

 

where εo is usually a time series but needs to be reduced to a single 

number. 

� Locate all (or a representative set of) models that comply with this 

definition in the feasible model space. 

� Propagate the predictions of these models into the output space while 

considering other uncertainties 

These steps try to answer the three aspects that need to be addressed in any 

attempt at uncertainty estimation, which are understanding, quantification and 

reduction of uncertainty (Liu and Gupta, 2007). The technical implementation of 

the steps has resulted in numerous frameworks and techniques in the past few 

decades (see section 2.2.4.1). One of the common factors of almost all the 

frameworks is that they perform detailed examinations of system conditions 

(learning from the model and/or data - Gupta et al., 2008; Beven, 2006; Beven 

and Freer, 2001) to gain adequate insight and understanding, which intelligence 

allows them to delegate credible probabilities (defining uncertainty) to possible 
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outcomes. The prominent basis of most of the frameworks are fairly common 

semi-analytic or numerical sampling based methods which work independent of 

model equations or even the model code. These methods generate a 

predetermined number of sets of inputs that are used to generate multiple 

outputs. A relationship is then established between the inputs and outputs using 

the model results at the sample points. The most common sampling based 

uncertainty analysis methods are the Monte Carlo and Latin Hypercube Sampling 

methods, Fourier Amplitude Sensitivity Test (FAST), reliability based methods and 

response surface methods.  

Monte Carlo Sampling Methods: By far the most common methods for 

uncertainty analysis are based on Monte Carlo sampling, with a wide range of 

applications. Monte Carlo methods are based on random sampling from 

distributions of inputs and the use of multiple model runs to generate a 

distribution of output. They can thus be used to solve uncertainty propagation in 

models (Doll and Freeman, 1986; Fishman, 1996). In order to generate a 

reasonable distribution of the outputs, Monte Carlo simulations therefore require 

a large number of samples. This is a major weakness of the methods as time and 

resources needed to run the methods may be very high especially for some 

complex models. However, computational efficiency is usually achieved through 

some sort of modification of the methods that improves the sampling from the 

input distributions.  

One such constraining technique is Latin Hypercube sampling, where the range of 

probable values for each uncertain input parameter is divided into segments of 

equal probability of occurrence and each parameter is sampled once from each of 

its possible segments (Stein, 1987). This results in random samples being 

generated from the full range of variability including extremes. The output will 

thus be more representative. 

FAST (Fourier Amplitude Sensitivity Test, Saltelli et al., 1999): The FAST 

method is used to calculate the relative variance contribution of each uncertain 

input parameter to the total variance of model outputs. Basically, it is based on 

the consolidation, using Fourier transformation, of the uncertain inputs into a 

single frequency output (Saltelli and Bolado, 1998). Cumulative probability 

functions can be used to transform any other distributions that are not uniform 

for FAST and this reduces errors, improving the accuracy of transformation and 

making it more convenient in practical applications (Fang et al., 2003). Like 

SOBOL (Sobol, 1993), FAST does not need a linear or additive model behavior for 
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quantitative sensitivity and/or uncertainty analysis. The structure of the model to 

be analyzed does not have to be known. Notwithstanding the apparent versatility 

and, therefore, wider applicability of Monte Carlo methods, FAST has also been 

applied in many studies related to model sensitivity and/or uncertainty (e.g. 

Saltelli et al., 1999; Fang et al., 2003; Deflandre et al., 2005). The main 

advantages of the extended FAST are its robustness, especially at low sample 

size, and its computational efficacy (Saltelli et al., 1999). 

 

Reliability Based Methods: FORM/SORM (First/Second Order Reliability 

Method, Cawlfield, 2000): FORM and SORM are approximation methods that 

estimate the probability of an event (typically referred to as ‘failure’). FORM and 

SORM are useful methods when the analyst is not interested in the magnitude of 

the model output, and its potential variation, but rather in the probability of the 

output exceeding some threshold value (Helton et al., 2006). FORM gives an 

estimate of how much a given input factor may drive the risk (probability of 

failure) of the system under study (Cawlfield, 2000). SORM works in more or less 

the same manner as FORM serve for the fact that it involves a higher order 

approximation. This makes it more computationally demanding.  

Response Surface Methods (Box and Wilson, 1951): These methods explore 

the relationships between several explanatory variables and one or more 

response variables. A response surface is a mathematical function that represents 

the behavior of a system, either real or simulated, by approximating the 

relationship between a set of its inputs and some given output variable (Fetel and 

Caumon, 2008). The methods consist of (i) screening to determine a subset of 

important model input parameters, (ii) making multiple runs of the computer 

model using specific values of these input parameters, and (iii) fitting a general 

polynomial model to the model data (using the method of least squares). This 

fitted response-surface is then used as a replacement (or proxy) for the computer 

model, and all inferences related to uncertainty analysis for the original model are 

derived from this fitted model (Box and Draper, 2007). These methods are an 

efficient approach for identifying statistically significant model parameters, and 

constructing response surfaces (Box and Draper, 2007). More recently, the 

surface response methods have been used to approximate the Pareto optimal 

front in multiple-objective optimization or calibration problems (Gupta et al, 

1998; Vrugt et al., 2003a) in hydrological modelling (Yapo et al., 1998; Madsen, 

2000) and have shown promise in their ability to provide useful insight into 

parameter uncertainty as well as model frailties (Gupta et al., 1998).  
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The other methods are the possibilistic (Montanari, 2007) and Bayesian methods 

(Neuman, 2003), explained before, and the inverse problem (Doherty and 

Johnston, 2003; Gallager and Doherty, 2007) and the fuzzy theory or worse 

case/best case scenarios (Kinzelbach, 2003). 

2.2.5 Common contemporary technical approaches to uncertainty 

estimation in hydrological modelling 

Several computer packages containing routines for many of the methods 

discussed above have been designed and are reported in the literature.  The main 

aim of this section is to briefly discuss a small selection of the more common 

technical implementation tools/frameworks for uncertainty estimation and/or 

analysis that are currently being used in hydrological modelling. The major thrust 

in the examination of these techniques is in assessing their utility in areas/regions 

of data scarcity. The bulk of the materials that follows in this section has been 

paraphrased from the report on the PUB-IAHS Workshop on “Uncertainty Analysis 

in Environmental Modelling” held in July of 2004 where presentations where made 

on the various frameworks available for uncertainty analysis 

(www.es.lancs.ac.uk/hfdg/uncertainty_workshop/uncert_methods.htm). While 

some other literature sources were consulted, some sections or parts of the 

presentations have been adopted directly into this review.  

 

GLUE (Generalised Likelihood Uncertainty Estimation, Beven and Binley, 

1992): This is probably the most widely known and commonly used framework 

to investigate, quantify and analyse uncertainty of model simulations. It is the 

forerunner of the family of techniques that do not use conventional statistical 

approaches. The Generalised Likelihood Uncertainty Estimation (GLUE) 

methodology (Beven and Binley, 1992) was developed in an attempt to directly 

account for uncertainty in hydrological models. GLUE is designed to accept 

several different models that are consistent with observed response (i.e. 

behavioural) while those considered non-behavioural are rejected. This is 

achieved through the use of a likelihood criterion, which assigns zero likelihood to 

the non-behavioural models (Freer et al., 2003). The behavioural models can be 

statistically analysed to determine prediction boundaries, e.g. 95% prediction 

limits around the mean of the distribution of the behavioural outputs. A 

comparison of the observed response and the model outputs can reveal whether 

or not the observation falls within these boundaries.  
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The main underlying assumption of the GLUE framework is that the likelihood 

measure for each parameter is non-negative (non-zero for all behavioural models 

and zero for non-behavioural) and increases monotonically with increasing model 

performance (Beven and Binley, 1992; Beven and Freer, 2001). It also assumes 

stationarity of the error function between the calibration and validation periods.  

 

The main strengths of GLUE are that the framework (Beven, 2006; Beven and 

Freer, 2001; Freer et al, 2003): 

� Explicitly accounts for uncertainty in model structures and parameter sets, 

thus allowing for all possible valid models to be evaluated.   

� Ability to incorporate new data to update prior knowledge about models or 

parameters 

� Allows that behavioural models may be scattered throughout the 

parameter space. 

� It is not model specific and can allow any model structure to be evaluated  

� Can be used as a platform for learning from models (Gupta et al., 2008) 

especially in cases where more models are rejected than accepted. 

The main weaknesses of the framework are; 

� Subjectivity of the assumptions on which the framework is based 

especially the lack of formal assumptions in assessing the likelihood of 

different models (Mantovan and Todini, 2006).    

� Inefficient sampling method: The framework uses uniform sampling in the 

parameter space which is not the most efficient even for simple response 

surfaces (Blasone et al., 2008). This results in high computational 

demands especially with complex and/or high dimensional models 

(Hossain and Anagnostou, 2005). 

BATEA (Bayesian Total Error Analysis, Kuzcera et al., 2006; Kavetski et 

al., 2006): BATEA provides a platform for directly addressing of all sources of 

uncertainty in the calibration of conceptual type models (Thyer et al., 2007). It 

uses explicit probabilistic error models to estimate the uncertainty associated with 

observed input data (especially rainfall, Kavetski et al., 2006). The basic idea of 

BATEA is to represent the conceptual hydrological model and its error models as a 

Bayesian hierarchical model with additional variables describing errors in the data 

and the conceptual model. These additional variables filter out the input error 

given the model hypothesis and the observed data. It is based on the premise of 

an error model that is stationary over time (Kuzcera et al., 2006) and that the 
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input uncertainty is independent for each storm event though there is an 

allowance to use alternative uncertainty models. 

 

The main advantages of BATEA can be summarized as (Thyer et al., 2007; 

Kavetski et al., 2006): 

� Explicitly accounts for different sources of uncertainty. This allows for the 

separation, analysis of and learning from the different sources.  

� Flexible in that it can handle the evaluation of alternative input and output 

error models.  

The main weaknesses are: 

� Computationally demanding. 

� The need to specify valid error models, which are currently poorly 

understood.  

� It relies heavily on the availability and accuracy of historical observations 

of stream discharge. 

� Subjectivity on the assumed statistical inference which is conditioned on 

the conceptual and error models. 

� The assumption of stationarity of the error model. 

 

DYNIA (Dynamic Identifiability Analysis, Wagener et al, 2003): The DYNIA 

approach is used to locate periods of high identifiably for individual parameters 

and to objectively detect failures of model structures. It is based on the main 

tenets of the Regional Sensitivity Analysis (RSA, Hornberger and Spear, 1981), 

and GLUE (Beven and Binley, 1992) approaches. Basically, DYNIA divides a 

calibration time series into a sequence of small windows (time steps). For each 

window, it identifies parameter sets that allow the model to best reproduce the 

observations and then plots the distributions of the preferred parameter values as 

a function of time. The dotty plots are analysed to identify periods of high 

identifiability. If there are many local optima or near optimal values scattered 

throughout the response surface, it may be difficult to identify optimal parameter 

values (Wagener et al., 2004). DYNIA uses Monte Carlo to sample from an 

assumed uniform prior distribution of the feasible parameter space. If the 

parameter values change through time, it suggests that, within the model, the 

parameters are being adjusted to overcome shortcomings in the model structure 

(DeMaria et al., 2007). However, it must be remembered that using parameter 

variation as an indicator of model structural failures assumes time invariance of 

the catchment processes described by the parameter. Variation in values of the 

preferred parameter in those circumstances rather corroborates the model 
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structure and is not necessarily an indication of failure (Tripp and Niemann, 

2008).  This is however true only if this variation is correct. 

 

The main strengths of DYNIA are summarized as follows (Wagener et al., 2003; 

2004): 

� Robust based on its ability to analyse parameter variation in time and 

identify and separate periods of noise from information. Its parameter 

estimation enables it to be used as a surrogate for model calibration.  

� Model independent as it can be used with any structure and can also be 

used in an offline mode. 

� Allows learning from the models and identification of possible 

uncertainties. 

� Flexible with choice of model performance assessment criteria. 

The disadvantages of the framework are; 

� Determination of feasible parameter ranges may be subjective. 

� Adequate representation of the shape of response surface requires a large 

number of models. That makes it computationally demanding.  

� Poorly defined response surfaces, with near optimal parameters located far 

from the peak, are a problem. The proposed measure of identifiability will 

fail. 

� Does not explicitly consider parameter interactions which are important in 

defining the shape of the response surface. 

 

DBM (Data-Based Mechanistic modelling, Young and Beven, 1994; Young, 

1998; 2001): The DBM approach is an example of the solution of the 

environmental modelling problem by having it posed as an inverse problem. The 

DBM modelling philosophy is based on the construction of ‘parametrically 

efficient, low order, dominant mode models’ (Young, 1998). In the DBM modelling 

approach, the model structure is first identified using objective methods of time 

series analysis based on a given general class of time series model (e.g. linear or 

continuous-time transfer functions). The resultant model is only acceptable if, in 

addition to adequately explaining the historical observations, it can be explained 

in physically meaningful terms. The initial model identification phase is essentially 

Bayesian in that it assumes that the parameters and inputs of the initial 

deterministic model are uncertain and can only be estimated using distribution 

functions (Young, 1999; 2001). The propagation of the uncertainty is achieved 

through a Monte Carlo simulation which also identifies the dominant modes 

model. The effects of uncertainty can therefore be evaluated efficiently given the 
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stochastic nature of the DBM model. The basic assumption in this approach is the 

existence of suitable observed data to generate the model structure, which makes 

it difficult to apply in data scarce regions of the world. If used in such regions 

then uncertainties are likely to be large, making it an unsuitable candidate to aid 

decision making. 

The main strengths of the DBM approach are: 

� The physical relevance of the model and the direct relation of the 

mathematical relationships to the scale of the time-series measurements 

used in their derivation (Young, 1999). This is important when making 

deductions from the modelling results. 

� Versatility in that it can be used in a wide range of applications (e.g. 

forecasting) and can be used for both online and offline applications 

(Young, 2001). 

� Its simplicity and ability to characterise the dominant modal behaviour of a 

dynamic system. This makes such a model an ideal basis for model-based 

control system design (Young and Chotai, 2001). 

The weaknesses of the approach are related to its dependence on observations 

whose accuracy cannot be guaranteed. This implies that the quality of the data is 

paramount before a model can be developed.  

 

PIMLI (Parameter Identification Method based on the Localization of 

Information, Vrugt et al., 2001): This is used to estimate model parameters 

and the approach is based on the Bayesian recursive estimation technique (BARE) 

of Thiemann et al. (2001) and the Generalised Sensitivity Analysis (GSA) of Spear 

and Hornberger (1980). The approach essentially advocates the existence of an 

optimum solution (i.e. parameter set). The observed record is subdivided into 

smaller datasets, each of whose impact on the sensitivity of the model to the 

parameters is evaluated (see also Wagener et al., 2003). PIMLI then uses the 

”variability in time of the model sensitivity for the various parameters to split the 

total set of measurements into disjunctive subsets that each contain the most 

information on one of the model parameters” (Vrugt et al., 2001). Each of the 

sub-datasets is then utilized for the constraining of its corresponding parameter. 

It assumes an invariable model structure and its inputs. 

The strengths of the PIMLI method are (Vrugt et al., 2002; 2003b; Larsbo and 

Jarvis, 2006): 

� Identification of a unique optimal parameter set. 



 
 

40

� Enables direct uncertainty estimation through generating classical 

Bayesian uncertainty bounds on the model predictions. 

The perceived weaknesses of the method are: 

� Does not explicitly consider uncertainty in the parameter estimation, nor 

structure or input uncertainties which impact on parameter identifiability. 

� High computational demands 

� Depends on availability of observations whose quality cannot be 

guaranteed in many places. 

 

SCEM –UA (Shuffled Complex Evolution Metropolis global optimization 

algorithm, Vrugt et al., 2003a): The SCEM-UA global optimization algorithm is 

a Markov Chain Monte Carlo (MCMC) sampling algorithm used to infer the 

posterior probability distribution of model parameters. MCMC provides a solution 

to the difficult problem of sampling from a high dimensional distribution for the 

purpose of numerical integration. The idea behind MCMC for Bayesian inference is 

to create a random walk (called Markov process) and then to run the process long 

enough so that the resulting sample closely approximates the original population 

from which the sample was taken (Glimm and Sharp, 1999). These samples can 

be used directly for parameter inference and prediction. SCEM-UA uses complex 

shuffling to continuously update the prior distribution to a posterior distribution. 

 

The reported advantages of the method are: 

� Efficient in that it can generate explicit estimates of parameter uncertainty 

and prediction uncertainty bounds on the model outputs. . 

� Comprehensive in its exploration of the whole feasible parameter range 

and also produces estimates of parameter sensitivity over this range.   

The main weaknesses of the algorithm are: 

� It is computationally demanding. 

� Limited in its exploration of uncertainty as it ignores inputs and model 

structure uncertainty. 

 

SODA (Simultaneous Optimisation and Data Assimilation, Vrugt et al., 

2003c; 2005): SODA, like BATEA (Kuzcera et al., 2006), tries to account for all 

sources of uncertainty, i.e. inputs, outputs and model structure. This is achieved 

through simultaneously applying parameter estimation optimization and data 

assimilation techniques using SCEM-UA (for efficient parameter exploration) and 

Ensemble Kalman Filter (for computational power and efficiency, Evensen, 2003). 
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For the estimation of the uncertainty associated with the output data, a non-

parametric estimator is employed.  

The main advantage of the method is (Vrugt et al., 2005): 

� Comprehensive and accounts explicitly for all sources of uncertainty 

affecting hydrological modelling and produces uncertainty bounds on 

model simulations. 

 

Unfortunately, given the complexity and extent of the uncertainties being 

considered, the method is computationally taxing. The method, like BATEA, can 

be model sensitive as they use the model outputs to identify the uncertainty in 

the input data. 

 

Use of qualitative information (Soft Data, Seibert and MacDonnell, 2002): 

This approach is premised on the understanding that hydrologists have more 

knowledge about a system than they eventually use for model calibration and 

that a deliberate incorporation of this knowledge whenever possible would 

improve model simulations. Seibert and MacDonnell (2002) call this knowledge 

(or intelligence) soft data that are usually non-numerical in nature.  

 

The biggest problem with this approach is the level of subjectivity that can 

pervade the modeling process. While that may be the case, the incorporation of 

all available intelligence about a given system should be more reasonable than 

ignoring potentially crucial hydrological knowledge (Bergstrom, 1991; Uhlenbrook 

and Sieber, 2005). The other disadvantage is the fact that the soft data would 

normally be acquired through extensive field experiments or through experience 

gathered over long periods. It is unreasonable to assume that in largely 

ungauged regions resources would be available to embark on such data (or 

experience) gathering expeditions when measurement networks are shrinking 

(Oyebande, 2001; Hughes, 2004b; WWAP, 2009). Besides, getting sufficient 

understanding will take time and spatial heterogeneity would dictate that a lot 

more data collection would be required in huge basins. Surely, it would be 

cheaper (in both the short and long terms) to put up a measurement station. This 

approach depends on the availability of observations before the soft data can be 

used to constrain and reduce uncertainty in the model outputs. Soft data should 

be used, whenever and wherever possible, to augment any other method. It is 

good scientific practice to use all the available knowledge (qualitative or 

quantitative) to restrain predictive uncertainty. Soft data provides additional 
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criteria for parameter estimation through the use of hydrological knowledge and 

reasoning. 

 

 

Ensemble predictions 

Problems in hydrological modeling and uncertainty estimation are accentuated in 

ungauged or altered (e.g. land use) basins, because of the unavailability of 

sufficient historical observations of flow for parameter estimation through 

calibration. Of the many potential approaches the most promising has been based 

on the use of ensemble predictions. The basic tenet is that a range of possible 

models describing a given system by an ensemble of predictions is developed 

through sampling from the feasible parameter space and different criteria are 

used to separate the most likely sets from the unlikely ones (Beven and Binley, 

1992; Freer et al., 1996; Beven and Freer, 2001). Ensemble approaches are used 

in both gauged and ungauged basins and have been seen to perform much better 

in the former case even with a very limited observed data set (Beven and Seibert, 

2009). Of practical importance for the application of this approach in ungauged 

basins is the development of rejection criteria to distinguish between the 

acceptable (i.e. behavioural) from the non-behavioural models since observations 

are not available. McIntyre et al. (2005) proposed ensemble modelling and 

weighted averaging to establish the best estimate of flow at the ungauged basins. 

Local models are used to estimate parameters for some gauged ‘donor’ basins, 

which are then used to develop relationships with catchment descriptors. The 

established relationships are used to guide the definition of prior and posterior 

likelihoods (based on some measure of similarity) for ‘candidate’ models of 

ensemble predictions in the ungauged basins. McIntyre et al., (2005) concede 

that while the ensemble of candidate models does provide some indication of the 

range of uncertainty in the ungauged basin, blind testing in gauged basins 

revealed the inability of the ranges to capture the high flows.  The main 

disadvantages with this method are that it depends on the availability of observed 

data to establish parameters and therefore suffers the same problems as any 

other regionalization process. The other problem is that the choice of similarity 

measures is subjective (in the same manner as the GLUE approach) and weighted 

averaging is not robust enough to accurately estimate flow. Besides, it is not a 

good approach to try and establish a single optimum flow series based on 

uncertain inputs.  
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The approach by Yadav et al. (2007) is also based on ensemble predictions but 

uses the ranges of expected catchment behavioural indices to constrain the 

ensembles of any model at ungauged sites. Different catchment hydrologic 

response characteristics are estimated and regionalized in a framework that 

allows the incorporation of the uncertainties related to the estimation process, 

resulting in ranges of possible streamflow behaviour that can be used in 

ungauged basins. This extrapolation of catchment behaviour has huge potential 

for conditioning hydrologic modelling in ungauged basins. The ensembles result 

from a sampling of the uniform distributions of the feasible parameter space and 

the model simulations compared with the regionalized indices of catchment 

behaviour. Those model outputs falling outside pre-determined prediction limits of 

the indices are rejected.  Working with same data set used in the Yadav et al. 

(2007) study, Zhang et al., (2008) extended the catchment behaviour indices 

approach to enable the use of multi-objective optimization for the identification of 

model ensembles in ungauged basins.  

 

In general the main advantages of the catchment behaviour indices approach 

ensemble predictions in ungauged basins are (Yadav et al., 2007): 

� Model independent, implying consistency of results even when used 

across different model structures.  

� Avoids the impacts of parameter calibration and/or model structural error.  

� Enables learning from the process about the controls on watershed 

response behavior at the scale of interest, which could guide an improved 

approach to watershed classification.  

 

Summary 

While the technical frameworks considered in this discussion constitute only a 

small fraction of the whole population of techniques available, an examination of 

the literature reveals that the use of Bayesian approaches (both formal and 

informal derivatives) is quite popular. Another pertinent observation is that while 

these elaborate and mathematically sound frameworks have facilitated the 

understanding and quantifying of predictive uncertainty, few have gone beyond 

that to methods that address the critical aspect of reduction of uncertainty in an 

explicit and cohesive way (Ajami et al., 2007). This is of practical significance – 

what do we do with the uncertain results? A pervading and somewhat worrying 

thread that runs through almost all of these elegant techniques is their reliance 

on observations for definition and/or analysis of the posterior distribution or error 

functions of simulations to estimate uncertainty. This is quite understandable 
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given that they are developed in regions where substantial historical observations 

are available (circumstances influence the models/techniques that are developed, 

Brugnach et al., 2008). However, in places with reduced hydrological data (short 

data records), these methods may be difficult to apply, possibly leading to poor 

conditioning in the estimation of uncertainty. The resultant confidence bands 

would be hardly reliable. Thus, in typical ungauged regions like southern Africa a 

lot of adaptations (and often compromises) have to be made to use many of 

these techniques. While the definition of ‘ungauged’ has been universally 

accepted, in practice (from experience with model application in southern Africa 

and informal discussions with scientists in the developed world) it appears to 

mean different things in different places. Otherwise, how does one explain the 

inability of methodologies apparently designed to work even in ungauged basins 

to be difficult to use in some places. As has been pointed out earlier, the southern 

African region does not have sufficient quantities and quality of observed data to 

be able to efficiently use most of these techniques. It is rather sad though true 

that most of the ungauged basins of the world are in the regions that are most 

vulnerable to water crises and require the ability to confidently and reliably 

quantify their water resources for reliable decision and/or policy making. 

Therefore, the question of practicality is pertinent in the evaluation of the 

frameworks for use in ungauged basins. While some components of some 

frameworks have the potential to be useful in the region and indeed the use of 

ensemble predictions would reasonably work, a complete package is not 

available. This author contends that the development of these frameworks and 

the models they have been tested with in different environments (in all senses) 

affects the transferability (and utility) of these frameworks in a different 

environmental setting. It is therefore necessary that the southern Africa region 

either develops its own frameworks that would work with current water resources 

estimation tools or work with the international community to enable the current 

crop of frameworks to be adapted to suit prevailing conditions. The latter may 

necessitate the re-coding of existing frameworks. The current study follows the 

latter option and tries to quantify and reduce predictive uncertainty in both 

gauged and ungauged basins based on the ensemble prediction approach 

 

2.3 Uncertainty estimation in water resources in southern 

Africa 

 

The consideration, let alone incorporation, of uncertainty in water resources 

estimation and analysis tools in southern Africa have been non-existent or at best 
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slow. Thus, there have been relatively few contributions from South Africa on the 

subject (Hughes 2004b). It is rather surprising that this is so given the water 

problems in the region and the need for water based developments. Huge 

decisions have thus been made based on modelling results using limited 

databases of observations but without incorporation (or even cursory mention) of 

the extent of the uncertainties related to both the forcing data and the model 

results. In a revealing article commenting on the impact of floods on engineering 

design, Alexander (2002) wrote that, “in the design of structures vulnerable to 

destruction or damage by floods there are no hydrological design standards or 

codes of practice, other than for dam spillway design. International guidelines and 

experienced South African hydrologists and designers have stressed the need for 

engineering judgement in the application of hydrological analyses. However, if 

hydrologists cannot quantify their uncertainty, how can this uncertainty be 

accommodated in the civil engineering design?”. This statement highlights the 

need to not only acknowledge that hydrological models produce uncertain 

information, but to quantify this uncertainty for informed decision making. 

Uncertainty in hydrological modelling therefore seems to be a relatively new 

development in the region. As such, there are many dangers linked to the 

introduction of this new science into existing tools. The most significant 

consideration, however, seems to be that whatever the methods adopted for 

uncertainty analysis they must be compatible with the existing tools. These 

existing tools, have been tried and tested in the region and have become part of 

the culture in water resources estimations. Practitioners are likely to be more 

flexible to add to their existing standard methods than to try something 

completely different. The rationale is that a lot of work has already been done 

based on these methods and any changes to methods have to be sufficiently 

justified as they will potentially undo large amounts of work, national databases 

and conventional wisdom (e.g. for South Africa the WR90 by Midgley et al., 1994 

and the WR2005 by Bailey, 2009).  

 

The introduction of modeling uncertainty (investigation, analysis and reduction) 

into water resources estimation tools has been slow in the region. Liden et al. 

(2001) considered uncertainty in their work on sediment modelling of the Odzi 

River in Zimbabwe and Mkwananzi and Pegram (2004) also introduced the idea in 

their design of a nowcasting system for the eThekwini Metro in South Africa. 

Using the Pitman (Pitman, 1973; Hughes et al., 2006) monthly rainfall-runoff 

conceptual model, Sawunyama and Hughes (2007) assessed the impact of rainfall 

data uncertainties on simulated flows in southern Africa. This study revealed that 
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there are significant changes in runoff simulations when different rainfall 

realizations (representing different levels of uncertainty) are used. This is 

significant given the shrinkage of rainfall gauging networks in the region and the 

fact that models (and consequently decision making) are heavily dependant on 

the ability to represent the spatial and temporal variations of rainfall patterns and 

distributions. Sawunyama (2009) also incorporated more sources of uncertainty 

(including input data, parameters and water-use data except model structure) to 

judge their relative impact on model results. The preliminary results suggested 

that, within the Pitman model, the parameters contributed the greatest 

uncertainty. This study thus tries to identify parameter sets that enable the model 

to realistically predict the behaviour of the natural systems in southern Africa 

while explicitly accounting for uncertainties in the parameters. The major aim is 

to be able to improve model application in ungauged basins of the region. 

Methods need to be developed to achieve this and a framework is proposed 

(Chapter 3) to systematically go through the process and ensure consistency. It is 

a fact that the Pitman model is quite heavily parameterized (Kapangaziwiri, 

2008), implying that some of the current methodologies may be difficult to adopt 

as they are likely to be computationally demanding in order to achieve reliable 

model uncertainties (e.g. GLUE, Beven and Binley, 1992). Where there is a 

paucity of prior information on the distribution of the parameters and/or 

acceptable parameter ranges, more model runs are usually necessary to achieve 

better representation of the response surface and, consequently, the prediction 

uncertainty.  

 

2.4 Summary and concluding remarks 

 

� Hydrological models are employed as an aid to water resources 

management. These models are far from perfect and their results are 

therefore uncertain. To increase confidence in the model results used for 

decision making and to reduce the risks associated with these decisions, it 

is therefore imperative that hydrologists seek to investigate, quantify and 

reduce uncertainty in their model results. The most common sources of 

uncertainty are model input, structure and parameter errors. 

� Uncertainty is an important component in decision and/or policy making. 

Any decision made has an associated risk (which can be measured in 

financial terms) and failing to account for uncertainty may magnify this 

risk. Any country that makes practical use of hydrological models cannot 

therefore ignore uncertainty. 
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� Representing uncertainty is simple in principle. A number of different 

methods are available to make uncertainty estimations. The methods can 

be based on conventional statistical approaches or on less formal methods 

using Bayesian statistics.  

� The reliance of most of the elaborate methods on historical observations 

makes them unsuitable for use in data scarce or ungauged basins. While 

regionalization techniques can be explored for the possible extension of 

the results of these methods to ungauged basins, the availability and 

quality of the data for the establishment of relationships are a huge 

problem in southern Africa. There is therefore a need to develop more 

robust methods for use in such regions.  

� There is rarely mention of what should be done when results are uncertain 

beyond the usual that more data needs to be collected. But what happens 

in the meantime? Many methods concentrate on the identification, 

quantification and/or analysis of prediction uncertainty, without offering a 

way forward. In the end, decisions will continue to be made in the same 

manner as before. That defeats the purpose of embarking on the science 

of uncertainty, and does little to justify the huge resources expended. 

� In the absence of observations to condition models and estimate 

parameters, the a priori method is an alternative. However this depends 

on availability of data on the physical basin physical and hydro-climatic 

attributes. 

� Preliminary analysis of uncertainty using the monthly Pitman model have 

identified parameter uncertainty as contributing the most to overall 

predictive uncertainty in southern Africa. This has to be investigated and 

the uncertainty reduced. There is a strong case for the analysis of the 

sensitivity of the various parameters so as to ascertain their individual 

contributions to the overall determination of behavioural models. 
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CHAPTER 3 

A FRAMEWORK FOR MODEL APPLICATION IN 

SOUTHERN AFRICA 

 

3.1 Introduction 

 

It was highlighted in the last two chapters that while there has been muted 

acknowledgement of uncertainty and its impacts in water resources estimation, 

planning and management in the southern African region, there has not been any 

concerted efforts to incorporate this into modelling tools. One possible reason is a 

lack of will and commonality for the methods required for adequate address of 

this problem. Another reason could be the lack of assessment of the risks posed 

by using uncertain results. This chapter makes a contribution to the development 

of an uncertainty framework for model application that can be used in the region. 

A common platform for model uncertainty evaluation is important for reduction of 

risk associated with model-based decisions. One of the main objectives of the 

International Association of Hydrological Sciences (IAHS) initiative on Prediction 

in Ungauged Basins (PUB) is to develop science that enables the prediction of the 

hydrological behaviour of any ungauged basin (Sivapalan et al., 2003). In spite of 

the nobility of this endeavour, hydrologists are aware that they may never 

achieve accurate predictions. However what is emerging as important in this 

exercise is the importance of uncertainty. The treatment of uncertainty in the 

whole process is essential to the problem of understanding what is really involved 

with making predictions in an ungauged basin (Meixner et al., 2004). Firstly one 

needs to identify the potential sources of uncertainty and quantify the uncertainty 

before attempting to reduce it. The need to explicitly incorporate uncertainty is 

leading to a shift in the philosophy in making hydrological predictions from 

optimization to consistency. The former seeks to identify a single best model 

usually through calibration against some historical observation. However, given 

the errors and uncertainty associated with observations (when available), it is 

possible that a number of equally likely models can describe a given system. 

Consistency is therefore the acceptance of more than one model as a 

representative of the expected system hydrological behaviour (Wagener et al., 

2006a). The accepted ensemble of predictions should encompass all possible 

observations (if being assessed against observed data) obtainable if the attendant 

uncertainties and errors were accounted for. Consistency is measured in terms of 

the expected catchment response based on hydrological understanding, 
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underlying modelling assumptions or historical observations. This is a possible 

explanation of equifinality (Beven and Binley, 1992), where the incorporation of 

uncertainty in making hydrological predictions necessitates the acceptance of 

more than just one model structure/parameter set combination to describe 

expected behaviour in any given basin, even if the basin is gauged.   

 

The classical approach to the search for an appropriate model to represent a 

given system is largely driven by identification of a single model (structure and 

parameter set) that optimizes some set performance criteria. Such criteria are 

typically one or more numerical objective functions that calculate the aggregated 

distance between the observed and simulated variable of interest (Wagener et al., 

2006a; Son and Sivapalan, 2007) or visual examinations to evaluate the model’s 

ability to reproduce observations. Such approaches are more focused on 

deterministic simulation and, in the process, ignore uncertainties (parametric or 

otherwise) in the development of measures of model performance. Hydrological 

models are abstractions of the real world physical processes and are therefore 

unlikely to evaluate all plausible responses. Also, most of the observed data, 

especially in the southern African region, are residuals measured at the basin 

outlet and heavily impacted by unquantified or poorly quantified upstream 

activities. Therefore, it is possible that more than one model (structure and 

parameter set) can be acceptable as being consistent with regards to 

observations or underlying assumptions or expected response based on the 

physical makeup of the basin. While such a philosophy explicitly allows the 

incorporation of anticipated uncertainties, it is necessary to determine the extent 

of this consistency and acceptability. This recognises the need for an objective 

and consistent filtering criteria and if this can be achieved then, at least in theory, 

predictions can be achieved in any ungauged basin.  

 

3.2  Approaches to making predictions in ungauged basins 

 

Until recently, the most common approach to making continuous hydrologic 

predictions in ungauged basins has been the extrapolation of information on 

model parameters from gauged basins in a process commonly known as 

regionalization (Nathan and McMahon, 1990). The basic tenet in regionalization is 

that, if there exists a relationship between model parameters and basin properties 

which holds for a gauged basin then flow simulations can be achieved in an 

ungauged basin which has similar physical attributes. However, the transition 

from the identification of local models at gauged basins to the establishment of 
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relationships for regional models suitable for ungauged sites have some 

significant shortcomings related to the uncertainties associated with the local 

models and how these are affected by data errors and their own parameter 

uncertainties (Wagener et al., 2004; Wagener and Wheater, 2006). The lack of 

sufficient sets of observed data to condition the local model through calibration 

has been the inherent weakness of the regionalization process in data deficient 

areas making it difficult to develop credible and robust regression relationships. 

While concerted efforts are being made to classify catchments based on 

hydrological response and other similarities (Wagener et al., 2007), it would be 

futile if regional model applications will depend on the existence of observations. 

If such efforts are to be valuable contributions to making predictions in ungauged 

basins, it is suggested that consistency rather than optimization be the objective. 

The paucity of observed records in many places of the world, especially in 

Southern Africa, and the uncertainties related to available records precludes 

calibration. In that case it is sensible to embark on methodologies that are 

capable of producing all possible scenarios consistent with model assumptions 

and physical hydrological understanding.  

 

An innovative alternative strategy that has been tested in a number of areas was 

proposed by Yadav et al. (2007). The strategy is based on the use of regionalized 

dynamic catchment response signatures to characterize hydrological behaviour. 

This regionalization of the signatures, rather than model parameters, is more 

sensible in that the data required are usually available and/or the signatures can 

be determined from physical basin attributes. This strategy is a component of the 

signatures-based, diagnostic process of model application and evaluation 

advocated by Gupta et al. (2008). The approach incorporates modelling 

uncertainty analysis and deviates from traditional practice in that it does not just 

use statistically based objective functions to measure model performance. The 

reasoning is that these traditional approaches ignore hydrological understanding 

regarding how the model represents the functional behaviour of a catchment. 

Model diagnostic approaches are necessary given that the crop of complex models 

being developed is inevitably fraught with greater interdependencies of model 

components, limiting the effectiveness of contemporary evaluation techniques. 

The detail and complexity of current environmental models and the need to 

effectively learn from, evaluate and possibly correct them (Gupta et al., 2008) 

necessitates the need for effective diagnostic approaches. Diagnostic approaches 

according to Gupta et al. (2008) “must help illuminate to what degree a realistic 

representation of the real world has (or has not) been achieved and (more 
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importantly) how the model should be improved”. The process of model 

evaluation makes use of catchment signature indices of dynamic system 

behaviour to constrain and condition continuous flow simulations at gauged and 

ungauged sites (Figure 3.1). Wagener et al. (2007) and Yadav et al. (2007) 

define a signature as an index of the response behaviour of a catchment at a 

given time-scale, which is reflective of a catchment’s functional behaviour and 

can be regionalised. Since these constraints arise out of the theoretical basis for 

hydrological modelling it should be possible to test them against observed data 

(Gupta et al., 2008). Depending on the model, a range of constraints could be 

used and common ones include yield-storage curves, flow duration curve 

gradients, runoff ratio (runoff/precipitation or P/Q), aridity indices 

(precipitation/evapotranspiration or P/PE) and measures of discharge timing 

(Shamir et al., 2005). Yadav et al. (2007) showed that such signatures can be 

regionalized very well since they derive directly from observed streamflow, rather 

than from a noisy calibration process as in the case of model parameters. If the 

regionalization process includes estimates of uncertainty, then these regional 

signatures can be used as constraints on the behaviour of local hydrological 

models (Figure 3.1).  

 

The link between ‘input-state-output data’ and ‘static basin data’ represents the 

regionalization process in which regional signatures of catchment response 

behavior are used to constrain model outputs. This approach uses direct 

measures (from observed information) of the catchment behaviour to determine 

whether model outputs are ‘acceptable’ or behavioural and has been tested in 

some United Kingdom catchments by Yadav et al. (2007). The catchment indices 

are regionalized through the use of simple regression relationships with the 

confidence limits used to define the distribution of possible ‘behaviours’ for each 

index. For any given set of initial parameter values (defined either as equally 

likely values within a range, or as some type of distribution function), the model 

can be run for all possible parameter combinations to generate an ensemble of 

outputs. Predicted values of indices are then calculated from the model outputs 

and compared with the regional values to determine acceptable outputs from the 

output ensembles (Yadav et al., 2007 and Gupta et al., 2008). These regional 

signatures can thus be seen as regional priors on the expected catchment 

streamflow behavior. Additional information can be included if local priors on the 

model parameters are derived from static basin characteristics such as soil or 

topographic data. Local priors can also be used if there are some observed data. 

Such a framework therefore allows for the use of both local and regional priors 



 51

S TATIC BAS IN DATA
System Invariants or 
prio r know ledg e of  

b asin characteristics

MO DE L
Structu re or 

prio r know ledg e of  
fo rm and f unction

INPUT-STATE-OUTP UT
DATA

Sign at ures or dynamic 
response beh aviour

and patt erns

Regional 
Pr ior

L ikelihood

Regionalisation

A p
rio

ri 
es

tim
at

io
n

Data a ssimilation

Loc al Pr io r

S TATIC BAS IN DATA
System Invariants or 
prio r know ledg e of  

b asin characteristics

MO DE L
Structu re or 

prio r know ledg e of  
fo rm and f unction

INPUT-STATE-OUTP UT
DATA

Sign at ures or dynamic 
response beh aviour

and patt erns

Regional 
Pr ior

L ikelihood

Regionalisation

A p
rio

ri 
es

tim
at

io
n

Data a ssimilation

Loc al Pr io r

and for testing their relative value. In the process it is inevitable to get a better 

understanding of the system under evaluation which is an important part of 

making reliable predictions especially in ungauged basins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Diagrammatic representation of the use of priors in a model 

diagnostic approach used to constrain and evaluate model 

application (modified from Gupta et al., 2008)  

 

 

3.3 A framework for model application in both gauged and 

ungauged basins. 

 

While there has been general acknowledgement of uncertainty associated with 

water resources estimation in the southern African region (e.g. Ashton et al., 

1999; Alexander, 2002), there has not been any concerted effort to research the 

sources of uncertainty nor its quantification and propagation through the 

estimation process. What is important is that the risks related to the use of 

uncertain model outputs be well understood or appreciated. The management of 

risk is essentially the ambit of decision makers and includes implementing risk 

reduction strategies, improving resilience to vulnerability and positioning 

resources to exploit opportunities (Mahomoud et al., 2009). The consideration 

and incorporation of uncertainty in water resources estimation would surely go a 
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long way in assisting water managers make more informed decisions. Model 

outcomes and the decisions based on them are left vulnerable if the uncertainties 

associated with the modelling process are not analysed and documented (Beven, 

2000).  Uncertainty assessment is increasingly being applied in water resources 

estimations and techniques used are varied and numerous. There are first-order 

uncertainty analysis methods (Melching et al., 1990), sensitivity analysis (Morris, 

1991; Freer et al., 1996), Monte Carlo analysis (Seibert, 1997; Wagener et al., 

2003), Bayesian uncertainty (Tol and de Vos, 1998), parameter uncertainty 

investigation by validation, or by uncertainty frameworks (the Generalised Least 

Squares Uncertainty Estimation, GLUE, Beven and Binley, 1992), Bayesian 

methods (Thiemann et al., 2001; Ajami et al., 2007) and Pareto Optimal Set 

procedures (Chankong and Haimes, 1993). Though all these approaches are 

commendable and can be used to achieve the objectives of quantification of 

uncertainty, identification of factors most influential to model predictions and 

generation of output most relevant to decision making, there is need for 

consistency of methodologies. What this implies is that there is need to identify 

an approach that is consistent with the practical requirements of water resources 

estimations, the types of models being used and the data available in any given 

region. In southern Africa, it is therefore prudent to have a framework for model 

application that;  

 

� Is consistent (in terms of reproducibility and being in line with resources 

availability and modelling purpose) and explicitly includes uncertainty 

analysis in the generation of model outputs. 

� Simple and robust in principle but flexible enough to be useable with any 

model structure. 

� Can be applied with existing information or with information that is easily 

obtainable within the region. 

� Provides a platform for model diagnostic evaluation. 

 

A Water Research Commission (WRC) funded project on uncertainty in which the 

author is involved held a workshop in Pretoria during November 2008 to introduce 

the project to a range of stakeholders involved in water resources assessments or 

water resources decision making, as well as to define some of the technical 

approaches to the project in more detail. The main outcome of the workshop was 

the design of a consistent approach for including uncertainty analysis in the 

generation of hydrological model outputs that is independent of model type. 

Figure 3.2 illustrates the framework that has been adopted for use in southern 
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Africa with the support of the professionals that attended the workshop. The main 

components of the framework are the estimation of model parameters and 

definition of their distributions (Chapter 4), selection of a model structure and a 

sampling procedure to generate ensembles of simulations and the construction 

and application of model output constraints (Chapter 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 The model independent model application and evaluation 

framework that can be used in southern Africa  

 

While the main components are discussed in later chapters, the basic concepts of 

the framework are outlined below. The starting point is to establish the prior 

uncertainty distributions of the parameters of the chosen model (Wagener and 

Wheater, 2006; McCarthy, 2007; Munoz-Carpena et al., 2007). The approaches 

used to achieve this will inevitably be model dependent and may also vary from 

region to region for the same model. The nature of the distributions could also 

vary between models and between parameters. Some could be ‘structured’ 

distributions such as normal or log-normal distributions where reasonable 

information is available to suggest which parameter values are more probable 

than others. Other distributions could be ‘unstructured’ such as a uniform 

distribution defined simply by the specification of minimum and maximum values. 

In this case inadequate or no information exists to inform the likelihood estimates 
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of parameter values. The prior parameter distributions are used to generate 

multiple (say 10 000) parameter sets based on independent Monte Carlo 

sampling. It should be noted that overall results from Monte Carlo-based 

probabilistic assessments will always be influenced by the selection of input 

parameters to be included in the analysis (Nofziger et al., 1994), the type and 

parameterisation of probability distribution functions attributed to input 

parameters (Brattin et al., 1996), the absence/presence of correlation between 

variables, the extent of the correlations considered, the sampling scheme used 

(Saltelli et al., 2000) and the seed number used in the sampling (Dubus and 

Janssen, 2003). Running the model with all the parameter sets generates an 

equivalent number of output ensembles of flow predictions. It should be noted 

that not all of these ensembles will necessarily be consistent (i.e. behavioural, 

Beven, 2006) with expected hydrological behaviour. The filtering necessary to 

identify which of the model ensembles are behavioural is achieved by the use of 

constraints defined by the number of regionalized indices of hydrological 

behaviour. These indices, similar to the approach used by Yadav et al. (2007), 

are developed from observed hydrological responses and basin attributes. Such 

indices are expected to cover the range of hydrological regime characteristics 

(magnitude, frequency and duration) and some could either be shared by 

different models, or be specific to certain model types (i.e. indices based on daily 

flow regime variations would be relevant to daily models only). The use of indices 

is significant since they can provide insight into the functions of a catchment and 

are solid basis for a hydrologically relevant assessment for catchments. This is 

especially so when observed data are unavailable or insufficient. The regional 

constraints will also be subject to uncertainty, in that they are expected to be 

developed from imperfect relationships between observed indices of hydrological 

behaviour and prediction variables  (for example, basin physical attributes) whose 

measurements are capable of being taken at all locations including ungauged 

sites. Thus, cognizance of this ought to be taken when the relationships are used 

to constrain the model outputs. 

 

The formulation of the parameter distributions and the sampling scheme should 

be independent of the regional constraints. The parameter sampling scheme may 

be unconstrained by any prior knowledge (either because that intelligence doesn’t 

exist or is not reasonably adequate), resulting in larger uncertainty than the 

regional constraint (Figure 3.3 A). On the other hand, the sampling scheme could 

be based on some parameter estimation process that already incorporates prior 

knowledge. In this case it is possible that this knowledge is better than the 
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knowledge contained within the regional constraints. This would give lower 

uncertainty in relation to the constraints (Figure 3.3 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Illustration of the likely results of using prior knowledge to 

constrain parameter sampling scheme (B). Diagram A shows 

the result when little or no knowledge is used. 

 

The Pitman model (Pitman, 1973) has enjoyed popular use in the region for a 

very long time and has become a standard water resources estimation tool. For 

this study, a revised semi-distributed version of the model that incorporates 

surface and ground water interactions (Hughes, 2004a; Hughes et al., 2006) is 

used to evaluate the use of the framework. Figure 3.4 is a flow diagram of the 

version of the Pitman model used in this study. The Pitman model is a monthly 

rainfall-runoff model whose inputs are monthly time series of rainfall totals and 

long term estimates of annual potential evapotranspiration. Though the model 

works on a monthly time scale the monthly rainfall totals are disaggregated into 

the four internal iterations over which the model works. The Pitman model is 

much like any typical conceptual model with tank type storages. Interception, soil 

moisture, and ground water are the three conceptual storages in the model. It 

also has routines to simulate human influences such as abstractions and 

impoundments. The current version of the Pitman model with ground water 

routines is quite heavily parameterized with a total of 41 parameters. The 

rationale is that the parameters “should be easier to evaluate for ungauged (or 

altered) situations because they are more meaningful in terms of real hydrological 

processes and can be related to measurable catchment characteristics” (Hughes, 
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2004a). However, most of the parameters can be estimated a priori from basin 

properties leaving some 11 free (calibration) parameters. The current study 

focuses on the development of uncertainty estimation procedures for these 

calibration parameters. Table 3.1 and Table 3.2 list the parameters of the model, 

including some brief explanations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 The flow diagram of the Pitman model showing the main 

model components and their relevant parameters. 
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Table 3.1 Parameters of surface process descriptions of the Pitman 

model 

 

Parameter 

name 

Units Description of parameter 

RDF - Rainfall Distribution Factor – influences the evenness of 

rainfall distribution into the four iterations of the model. 

AI % Percentage of the area covered by impervious area which is 

contiguous to the river channel 

PI mm Interception capacity of the vegetation in the basin. This 

parameter is specified for 2 dominant vegetation types for 
both summer and winter seasons. 

AFOR % Percentage area of sub-basin under the second vegetation 
type  

FF - Ratio of potential evaporation rate for vegetation type 2 

relative to vegetation type 1 

R - Evaporation-moisture storage relationship parameter 

ZMIN mm/month Minimum sub-basin absorption rate 

ZAVE mm/month Mean  sub-basin absorption rate 

ZMAX mm/month Maximum sub-basin absorption rate 

TL months Lag of surface and soil moisture runoff 

CL months Channel routing coefficient 

 

Table 3.2 Parameters of sub-surface process descriptions of the 

Pitman model 

 

Parameter 

name 

Units Description of parameter 

ST mm Maximum moisture storage capacity 

FT mm/month Runoff from moisture storage at full capacity (ST)  

POW - Power of the moisture storage- runoff equation 

SL mm Minimum moisture storage below which no GW recharge 
occurs 

GW mm/month Maximum ground water recharge at full capacity, ST 

GPOW - Power of the moisture storage-GW recharge equation 

S - Ground water storativity 

T m2 d-1 Ground water transmissivity 

DDENS km km-2 Drainage density 

GWSlope % Initial regional ground water gradient for ground water 
movement 

 

While this study only concentrates on parameter uncertainty, the framework can 

be used to assess any source of uncertainty including, but not limited to, model 

input data errors (e.g. rainfall, evaporation), model structure uncertainties and 

climate change scenarios and uncertainties. Figure 3.5 illustrates the flow 

diagram of the use of the framework with the Pitman model. This illustrates the 

options available in different circumstances. The parameter priors are estimated 

from basin property data and if not available attempts (not yet done) will be to 

use global datasets of remotely sensed data. If there are historical observed flow 

data, then the model outputs can be assessed against these through use of pre-

determined objective functions. This conditions the local model. The observed 
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data could also be used in conjunction with basin attributes data to develop 

indices of dynamic catchment hydrological behaviour. In the absence of observed 

records of flow, the model outputs are assessed using regional hydrological 

signatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Flow diagram of the application of the Pitman monthly 

rainfall runoff model within the framework 

For the assessment of parameter uncertainty two additions to the framework 

(Figure 3.2) were made. The first one relates to the sensitivity analysis. This is 

necessary in order to determine the parameters that have the most influence on 

the model simulations based on either the constraints or a statistical objective 

function (in the case of gauged catchments). The incorporation of sensitivity 

analysis into the framework is a way to assess the robustness of both the 

framework and the model in taking advantage of the knowledge of the watershed 

topography and physical make-up. After determining the regions of behavioural 

parameters, it is envisaged that optimization for the parameters can be done 

(Figure 3.2). For purposes of staying within the physically realistic ranges, the 

boundaries of such optimization would be defined by the uncertainty limits of the 

hydrological signatures. While the Pitman model has generally rarely been used in 

an optimization framework (Ndiritu, 2009; Ndiritu and Daniell, 2001), and 

optimization is generally used in gauged basin using observed data it is possible 

that the hydrological indices can be used to constrain the optimization of the 

model outputs within acceptable (i.e. behavioural) ranges. Depending on the 

results of this analysis it may be necessary to improve the intelligence used to 

constrain the estimation process of the parameter priors. This necessitates a 
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feedback loop to the prior parameters where adjustments can be carried out on 

the estimation equations. For instance, one can interrogate the parameters (or 

group of parameters) related to the non-behavioural ensembles to determine any 

common possible problems. The parameter estimation equations and/or the input 

physical data may then be reviewed accordingly. 

 

3.4 Summary 

 

The main conclusions that can be drawn from this chapter are: 

� Many regionalization techniques have failed to provide adequate 

predictions in ungauged basins. Limited records to provide a critical mass 

for the development of regional relationships between parameter and 

basin attributes have made it difficult to use regionalization techniques in 

southern Africa.  

� There is need to consider uncertainty in water resources management to 

improve the quality of model-based decisions. To achieve this, it is 

imperative to develop an uncertainty framework. Such a framework was 

presented in this chapter with components to estimate priors for 

parameters and constraints. 

� This framework accounts for the various constraints expected to exist in 

the region related to, inter alia, data availability and accuracy, model 

preferences, capacity or willingness of practitioners to adopt new methods 

and access to specialized software. 

� The framework can be used with and model structure and is capable of 

being used in both gauged and ungauged basins. 

� The constraints provide a useful control on the model simulations 

especially in the ungauged basins. In the gauged basin these can be used 

to assess the reliability of both the model and the historical observations. 

� The constraints are also subject to uncertainty, depending on the veracity 

of the data used to develop the constraints (Kennard et al., 2009). 

Variation in bias, precision and overall accuracy of these metrics influences 

the ability to correctly describe flow regimes and detect meaningful 

differences in hydrologic characteristics through time and space. The range 

of this uncertainty should be greater than that related to the model 

outputs for acceptable models.  

 

A feedback loop is necessary in the framework in order to improve the parameter 

and uncertainty estimation processes. Model performance is assessed through the 
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use of signatures of hydrological behaviour in both the gauged and ungauged 

basins. The uncertainty constraints provide the physical boundaries of the 

hydrological process.  
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CHAPTER 4 

PARAMETER PRIORS 

 

4.1 Introduction 

 

Hydrological predictions have been achieved through the use of various types of 

models, from simple lumped, through conceptual, to more complex distributed 

physically-based structures. A typical hydrological model consists of a large 

number of coupled equations describing the different natural hydrological 

processes. Thus, in spite of the complexity of the structures, nearly all models 

have parameters (some mere mathematical coefficients and others with physical 

significance) that must somehow be quantified. Clarke (1973) defines a 

parameter as a quantity that characterizes an aspect of a hydrological system in a 

particular basin and should remain constant in time. Parameters are basin or sub-

basin specific with some expected to vary seasonally, and still others being 

dependent on the spatial or temporal scales used. For practical purposes to solve 

engineering problems, hydrologists and water resource managers have 

traditionally relied on "optimal" parameter estimates whose optimality is based on 

their sampling properties in the parameter space (e.g. mean square error, 

unbiasedness). A common example is the use of the maximum likelihood 

technique that has enjoyed popular use in both flood frequency studies and 

hydrological models. Marin (1986) argues that such measures may be 

inappropriate within the small sample size environment and the management, 

rather than inferential, focus of water resources planning. Given the many and 

varied sources of uncertainty characteristic of water resources planning, it is thus 

prudent to recognise that optimal parameters will not necessarily lead to optimal 

actions in the decision space. 

 

The most common approach to the quantification of model parameters has been 

calibration where the parameters are adjusted until the simulation matches the 

observed measurements as closely as can be achieved. However, the information 

which is normally available for calibration (and validation), i.e. time series of 

driving variables and discharge, often does not allow a decision about which 

parameter set is the correct or optimal one (Sorooshian and Gupta, 1983). Model 

structural inconsistencies and errors in observed data, considered together with 

the more or less arbitrary choice of the objective functions makes it unreasonable 

to expect that any one parameter set will be optimal (Beven and Binley 1992). 
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From a set of ten objective functions, Sefe and Boughton (1982) concluded that 

parameter values varied with the type of objective function used for the 

optimization. Kuczera and Williams (1992) demonstrated that parameter 

uncertainty increases when errors in the areal rainfall used in the calibration 

period are considered. It can thus be concluded that parameter uncertainty can 

arise from many aspects of the modelling exercise. Therefore, given the pervasive 

uncertainties that characterise water resources estimation procedures, it is not 

too difficult to see that optimal parameters may not necessarily lead to optimal 

actions in the decision space.  

 

The literature abounds with arguments for the use of other more statistical 

techniques (e.g. Bayesian procedures) for the estimation of model parameters in 

the water resource estimation problem (e.g. Thiemann et al., 2001; Beven and 

Binley, 1992; Kuzcera and Parent, 1998) which incorporate the expected 

parameter uncertainties. The major impetus for the approach was given by Vicens 

et al. (1975a) who showed that incorporating parameter uncertainty resulted not 

only in different reservoir storage requirements but also led to more efficient 

decisions (reservoir size) than with maximum likelihood estimators (Marin, 1986). 

Such studies show the importance of parameter uncertainty in the overall 

modelling process, as opposed to some schools of thought that regard it as being 

only important for the simulations of the internal states and fluxes of the model. 

Parameter uncertainty does contribute significantly to the combined modelling 

uncertainty (Melching et al., 1990) and by including uncertainty in model 

parameters (and therefore model outputs) through the use of probability 

distribution functions (PDF), rather than using single estimates, it is envisaged 

that more information is available to the water resources managers with respect 

to prediction error. Uncertainty associated with model output may be represented 

as a probability distribution or as a specific statistical quantity, such as the 95th 

percentile from the cumulative probability distribution (i.e. what is the streamflow 

prediction that is equaled or exceeded 95% of the time?). By introducing notions 

of confidence and probability, this approach provides more information than a 

single estimate and informs policy developers about the degree of risk associated 

with particular actions (Benke et al., 2008). 

 

This chapter therefore aims at providing answers to two fundamental questions in 

relation to the application of the Pitman rainfall-runoff model, which is popularly 

used in the region: 
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� How can the physical basin characteristics, and the role they play in the 

rainfall-runoff transfer processes, be used to directly (a priori) estimate 

hydrologically relevant parameters that can be used for large scale 

modelling in ungauged basins?  

� How can the uncertainties associated with the physical basin property data 

used for the a priori estimation of the Pitman model parameters 

(Kapangaziwiri and Hughes, 2008) be accounted for?  

 

Any attempts at answering these two questions can be presented in several 

different ways. Some ways would follow a top-down approach where the 

estimation of the parameters is discussed before the inclusion of uncertainty is 

tackled. The other is some type of bottom-up approach which starts with 

establishing the source of uncertainty and the data required to do the analysis 

and ends with the parameter estimation equations. In this study the former 

approach is deemed appropriate as it builds on the author’s Master of Science 

(MSc) work where estimation procedures for most of the calibration parameters 

were established (Kapangaziwiri, 2008; Kapangaziwiri and Hughes, 2008). The 

next sub-section will give a synopsis of the principles, motivation and the 

equations of the a priori parameter estimation process. The derivation of the 

estimation equations, and the explanations thereof, for those parameters that 

were not part of the previous work (Kapangaziwiri, 2008) will be given in detail at 

the time of their discussion in section 4.2.  

 

4.1.1 The parameter estimation approach 

 

This main thrust of this part of the study is to explore the incorporation of 

uncertainty (section 4.2) into existing a priori parameter estimation approaches 

(Kapangaziwiri and Hughes, 2008; Kapangaziwiri, 2008). The parameter 

estimation procedures are motivated by the understanding that if parameter 

estimation could be achieved directly using physical basin attributes and the role 

that they play in the rainfall-runoff process, then it would lead to a more 

consistent approach to making hydrological predictions especially in the ungauged 

basins of the region.  What these procedures entail is that the parameters should 

be hydrologically (and physically) relevant and have explicit conceptual physical 

meanings to enable the isolation of their individual effects. Such parameters 

would therefore help describe specific basin processes rather than multiple 

processes as is the case in many conceptual type applications. If that can be 

achieved then the need for basin-specific model calibration would be minimized, 
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leading to more consistent and objective results that can inform understanding 

about potential sources of uncertainty and how it is propagated into model 

simulations. Thus, such an approach provides a solid platform for the analysis of 

both predictive and parameter uncertainty with the aim of eventually reducing it 

(Kapangaziwiri, 2008).  

 

The earlier work concluded that the a priori estimates of the soil moisture store 

(ST, uncertainty incorporation in section 4.2.1), runoff (FT, POW, uncertainty 

incorporation in section 4.2.2 and 4.2.3 respectively), and infiltration parameters 

(ZMIN, ZAVE, ZMAX, uncertainty incorporation in section 4.2.4) were quite 

successfully physically defined. Additional parameters estimated in this study are 

related to the evapotranspiration, groundwater recharge and interception 

processes. Given the model structure, it was reasonable to assume that the 

maximum soil moisture storage capacity parameter (ST) would represent both 

the storage in the soil layer and in the unsaturated fracture zone between the soil 

and the water table.  The amount of moisture held in the soil component would 

depend on the soil’s porosity and its depth, while the unsaturated zone capacity 

would be influenced by the storativity and depth of the fractured zone. This 

means that deep, well-drained soils and gentle slopes would hold more water 

(higher ST), while shallower soils, often more characteristic of steeper headwater 

basins, have lower ST values. The release (rate and magnitude) of the water from 

these storage components as interflow (maximum of FT mm month-1) depends on 

the extent of topographic dissection (drainage density) and gradient, hydraulic 

conductivity, as well as the ability of the underlying geology to transmit the 

moisture from the unsaturated zone through fractures. Variations of interflow 

with the level of sub-basin storage (determined by parameter POW) is expected 

to vary with the spatial distribution of soil moisture storage which is influenced by 

basin slope and soil drainage characteristics that affect the rates and patterns of 

moisture re-distribution following storm events. POW defines the power 

(exponent) of the non-linear relationship between the soil moisture content and 

interflow. The basis for the estimation procedure for this parameter is the partial 

and variable source area concepts where the low-lying areas, rather than steeper 

areas, stay wetter and contribute interflow for longer. Within a basin, moisture 

movement is slower through poorly drained soils and gentle slopes (giving higher 

values of POW), but quite fast in steeper areas with well-drained soils (lower 

POW). 
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Parameters ZMIN, ZAVE and ZMAX are used to quantify the infiltration excess 

flow process in the model and therefore depend on the soil surface conditions 

(determining infiltration rates), the size of the soil moisture store, number and 

spacing of rain days (which influence the antecedent moisture conditions at the 

start of a rainstorm event) and typical storm durations (indicative of expected 

rainfall intensities).  

 

The relationships between the physical basin attributes and the parameters were 

developed based on well understood physical hydrology principles. This approach 

results in the estimation of the best estimate (mean) parameter values based on 

physical basin attribute data that are likely to be available (albeit differing in 

detail and quality) in most countries in the region. The earlier work 

(Kapangaziwiri, 2008; Kapangaziwiri and Hughes, 2008) demonstrated that the 

physical estimation equations generally resulted in sensible parameter values and 

adequate simulations of hydrology compared with observed data. However, there 

were also situations where less than satisfactory simulations were achieved using 

single (mean) estimates of the parameter values, demonstrating that uncertainty 

exists in the use of the estimation equations. At least part of the uncertainty is 

associated with the subjectivity inherent in the interpretation of the physical basin 

property data. For example, soil depth and slope values are typically given as a 

range from which a representative value would be inferred. There is a potential 

for inconsistency in the estimation process because different users may infer 

different representative values for the same basin using the same data. The 

estimation process is particularly prone to inconsistency when there are a number 

of different soil units (each with ranges of depth and slope) within the sub-basin 

being modelled and from which a single representative value has to be estimated.  

 

In an analysis of the contributions of different sources of uncertainty in the 

Pitman model, Sawunyama (2009) came to the conclusion that parameter 

uncertainty made the largest contribution to the uncertainty of model simulations. 

Hughes et al. (2010) investigated the propagation of parameter uncertainty by 

varying combinations of estimates of best parameter values based on their effect 

on flow generation (i.e. whether a combination produces higher or lower runoff) 

and concluded that a more robust analysis methodology needs to be developed 

for the application of the Pitman model in the region. The method used by Hughes 

et al. (2008; 2010) was discrete and did not explore the parameter space 

efficiently despite including all possible extreme parameter combinations. A 

parameter estimation process that directly incorporates measures of uncertainty 
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is therefore an imperative. The method presented here is based on the use of the 

range of variability in the input basin characteristics data to define the uncertainty 

in these data that will be propagated into the final values of the parameters. To 

do this efficiently requires a definition of the frequency or probability distribution 

functions (PDFs). If such PDFs are defined it then becomes a relatively 

straightforward task to generate samples (say 5000) from these distributions and 

run them through the parameter estimation equations. The results can then be 

used to define posterior PDFs of the estimated parameters that represent all the 

possible parameter values based on the variability of the physical property data. 

This approach has been adopted in this study and Section 4.2 gives full details of 

how the incorporation of uncertainty into the a priori parameter estimation 

procedures is achieved.  

 

In the case of South Africa, the source of the majority of the information on the 

physical basin characteristics data is the Agricultural Geo-referenced Information 

System (AGIS, 2007) database described in the next subsection. While this 

database may not be as comprehensive as would have been desirable for the 

parameter estimation processes, it is the most detailed information likely to be 

available in the region. In other countries data availability is poor and where it is 

available the quality (in terms of coverage, resolution and direct hydrological 

relevance) is generally low (Kapangaziwiri, 2008). In this study the parameter 

estimation processes that directly incorporate uncertainty were developed based 

on the best available data in South African with the expectation that they can be 

adapted to the other situations obtaining in the region.  

 

4.1.2 Description of the AGIS data 

 

For South Africa, the basin physical property information needed for the 

estimation of parameters and the uncertainty associated with them was derived 

from the AGIS land type information (AGIS, 2007). This is currently the best 

database representing the requisite information for this study and thus formed 

the basis for the design of these procedures. The AGIS land type maps are 

originally designed for the assessment of agricultural potential of South African 

land areas. However, the data can be used as an essential input into the 

parameter estimation equations. These data are especially useful for the main 

runoff generation parameters that are expected to be determined from soil and 

topography characteristics. The procedure (Sililo et al., 2001) for the construction 

of the land type maps procedure is represented in Figure 4.1. 
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Terrain units, made up of uniform terrain form, were demarcated using 69 

existing 1:250 000 topocadastral maps as background. These were combined 

with climate and soil maps to delimit the land type areas forming the land type 

maps at a scale of 1:250 000 (Land Type Survey Staff, 1997). Each land type 

exhibits a unique combination of soil pattern, macroclimate and terrain form and 

the boundaries between land types are determined by a change in any one or 

more of these features. Originally, 52 maps were printed with the land type 

information on top of the cadastral information but these were later digitized to 

obtain the electronic coverage of South Africa that exists today 

(www.agis.agric.za/agisweb/landtypes). AGIS (2007) is an online geo-referenced 

version of the land type database and provides a full description of any chosen 

land type for any area in the form shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The procedure followed for the construction of the land type 

maps (Sililo et al., 2001) 
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Figure 4.2 An illustration of the land type information from the AGIS 

database (AGIS, 2007) 
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The AGIS data typically includes the following information: 

� The total area (ha) covered by the land type and the part of this area that 

is not arable. 

� A brief description is given of the rock type and the geological formations 

present in the land type in their order of dominance. Information is 

generally derived from published 1: 250 000 scale geology maps 

(Geological Survey, 1981) and is used in conjunction with the published 1: 

1 million scale geology map of South Africa (Geological Survey, 1984).  

� Up to five terrain units (1 – 5) are used to describe each land type. A 

profile sketch of the terrain type indicating the land type by its number 

(Fb132 in Figure 4.2). These terrain units are representations of 

hilltops/crests, scarps or upper slopes, middle slopes, foot/lower slopes 

and the valley bottoms.  In the parameter estimation procedures only four 

of these units are considered. For each of these terrain units the following 

information, relevant to the estimation procedures, is specified:  

� Area (%) – the percentage of area occupied by each terrain unit within the 

land type (e.g. 15, 50, 20, and 15% for the terrain units 1, 3, 4 and 5 

respectively in Figure 4.2). 

� Slope (%) – this is given as a range of the percentage slope whose 

calculations are based on a slope wedge (in Figure 4.2 these are 0-3, 6-

12, 2-4 and 0-13 for the terrains 1, 3, 4 and 5 respectively). 

� Shape of slope – with concave, convex and straight slope forms denoted 

by X, Y and Z respectively. 

� Soil information – while the database does not give information on the 

spatial distribution arrangement of each soil series within a land type, an 

estimate of the area (%) covered by each soil series within each terrain 

unit is provided. The soils information provided are the depth range, 

topsoil and subsoil clay content, texture and type of depth limiting 

material for each soil series. There is no differentiation of depth within 

each terrain unit for a specific soil series. 

� The mechanical limitations associated with each terrain unit are described 

in terms of the classes given below. The limitations are due to stoniness 

and/or shallowness. 

MB0 – no mechanical limitations 

MB1 – many stones, but ploughable 

MB2 – large stones and boulders, unploughable 

MB3 – very shallow soils on rock 

MB4 – lack of soil 
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While information on soil hydraulic properties is not explicitly given in the 

database, it is assumed that these can be inferred from the texture class. The soil 

texture type information is therefore used to define and quantify some basic soil 

property values such as infiltration parameters, porosity and permeability based 

on the literature containing typical values (for example USDA, 1969; Rawls et al., 

1982; Schulze et al., 1985).   

 

4.1.3 Description of the GRAII data 

 

The Department of Water Affairs Groundwater Resource Assessment Phase II 

(GRA II) is based on a simple water balance model for the estimation of 

groundwater allocation scenarios. It is designed to model a distinct 

geohydrological or hydro-lithological unit (such as a groundwater flow basin) and 

to provide a rough, desktop estimate of the status of the groundwater resource 

and what volume might be abstracted without damaging local surface aquatic 

ecosystems over the long-term (DWAF, 2005). Algorithms have been developed 

for the estimation of storage, recharge, baseflow and the impact of present 

groundwater use has also been recorded. The results include several valuable 

datasets and maps and provide input to various levels of water resources 

planning and management. For the purposes of this study the most important 

data available from the GRAII database relate to the estimates of regional ground 

water slope, aquifer thickness, transmissivity, storativity and ground water 

recharge.  

 

GRAII Recharge 

Three estimates of groundwater recharge are given in GRAII for each quaternary 

catchment in South Africa. These values are essentially derivatives of estimates 

based on the Chloride Mass Balance (CMB) method which assumes that drainage 

of water is inversely proportional to the chloride content of pore water. This is the 

most common method used in the country. The method was used in a GIS 

framework where several GIS layers were used as filters to remove anomalies 

and introduce local variation to the results of the CMB method. The filters used 

include saturated aquifer thickness, soil drainage (Schulze, 1997), rainfall 

seasons, geology, land cover, topography and coefficient of variation of annual 

precipitation (DWAF, 2005). The resulting recharge values were then calibrated 

against observations, values reported in the literature or outputs from other more 

localized methods. The three values in the national database are; 
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Mean calculated recharge percentage from GRAII - output from GIS calibrated 

layer: These are the original outputs from the GIS filtered CMB results. They are 

based on multiple regression techniques applied to CMB output and GIS layers 

and calibrated against only 42 stations where recharge is calculated by the CMB 

method. Of the three recharge values given in GRAII, these are the always the 

largest.  

 

Mean calculated recharge percentage from GRAII - GIS calibrated against Karim 

Sami's output: These values are derived from the calibration of the CMB output 

and the GIS filter against the output of Karim Sami. While there is no explanation 

in the GRAII about the derivation of the Karim Sami values, it is common 

knowledge that Sami has done extensive work on groundwater recharge 

estimation (both published and unpublished) in many basins of the country using 

various methods (for example, Sami and Hughes, 1996; Sami and Murray, 1998; 

Sami, 1991; 1992 and 1994). The results of these studies were used to calibrate 

the CMB/GIS filtered outputs. This value is generally the smallest of the three 

estimates.  

 

Mean calculated recharge percentage from GRAII - GIS calibrated against output 

from RDM (Resource Directed Measures) office: This value is derived from the 

calibration of the CMB output and DGIS filters against quaternary based values 

from the groundwater/surface water interaction (GW/SW) project undertaken for 

the RDM (Resource Directed Measures) Directorate of the Department of Water 

affairs (DWA). The final recharge value was adjusted to match the estimated 

baseflow for the quaternary basins. It is therefore based on assumed base flows, 

derived using base flow separation procedures and appears to assume that 

recharge is equivalent to base flow ignoring any evaporation losses. 

 

Experience of use of the values in water resources estimations indicates that 

hydrological simulations with the two lower values produce more reasonable and 

consistent results compared to the largest values (Hughes, pers comm.). For the 

estimation of uncertainty related to the recharge parameter GW, the two lower 

values were therefore used.  

 

4.2 Estimating the parameter priors 

 

In Bayesian statistical inference a prior probability distribution (often referred to 

as just the prior) of an uncertain quantity is the probability distribution that 
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expresses the uncertainty about the quantity before observations are taken into 

account and used to constrain the prior uncertainty and determine posterior 

parameter distributions representing behavioural parameter sets. As discussed in 

Chapter 3 the approach used in this study is to constrain the prior parameter 

distributions using the measured physical properties (and their uncertainty) 

coupled with the parameter estimation equations.  

 

The AGIS data are generalized using soil type and terrain units at scales that are 

smaller than the modelling scale. This generalization is expressed as ranges of 

slope for each terrain unit and ranges of depth for each soil type. The assumption 

inherent in the approach used in this study is that these ranges can be used to 

represent the uncertainty in the appropriate value of any physical property metric 

to use at the basin scale for the purpose of estimating a model parameter value. 

Further uncertainty is related to the fact that there are a number of different 

terrain units and soil types that are associated with a single land type. Where 

several land types occur within a model spatial unit, additional uncertainty in the 

estimation of an appropriate parameter value is associated with this added spatial 

variability (Figure 4.3). The assumption used in this study is that the variations in 

the physical basin property data represent the uncertainty in the representation 

of these data at their scale of measurement. These explicit variations at the 

smaller or sub-basin scale can be used to estimate the uncertainty at the model 

scale.  

 

The basic tenet of the incorporation of uncertainty into the parameter estimation 

procedures is to assume some uncertainty in the physical basin attribute data 

that are used to directly quantify the model parameters. The rationale is that, if 

the frequency distribution properties of the input physical property data can be 

established, then it is possible to describe the distribution characteristics of an 

output parameter. Figure 4.4 is an illustration of this process where the primary 

data inputs refer to the raw basin characteristic data, measured at smaller scales 

and most will need to be transformed into their basin scale equivalents (the 

secondary variables). If the definition of PDFs of the inputs can be successfully 

defined then it would be possible to sample from these distributions to define 

distributions for the secondary inputs and, finally, the parameters.  
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Figure 4.3 An illustration of the complexity of the scale issues arising in 

the parameter estimation process incorporating uncertainty  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 The procedure followed for the incorporation of uncertainty 

in the estimation procedures of the Pitman model 

parameters 
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While there exist a number of distribution types for most environmental variables 

(Munoz-Carpena et al., 2007), it is generally accepted that the means, variances 

and ranges of the input parameters exert more influence on the output 

uncertainty than the form of the distribution (Haan at al., 1998). While values of 

common environmental parameters usually depend on the general variability of 

the application area selected and the scale (size) for which the measurement is 

expressed (Hillel, 1998), it is possible to derive marginal PDFs from scientific 

literature, physical bounds, surveys, expert judgment, and experiments (Saltelli 

et al, 2005). For instance, “when only the range and a base (effective) value are 

known, a simple triangular distribution can be used, while in the case when 

values seemed distributed equally along the parametric range, a uniform 

distribution is recommended” (Munoz-Carpena et al., 2007). In this study, the 

physical properties were assumed to have reasonably centrally distributed 

frequencies and the normal probability distribution was assumed to adequately 

describe the frequency characteristics of the raw physical basin data in most 

cases. However, it is noted that this assumption is difficult to confirm without 

additional detailed field observations. The exception is where a large range of 

slopes occur within a terrain unit with very steep maximum values. In this case a 

log-normal distribution was assumed. The posterior distributions of the secondary 

variables or the resultant parameters are then determined by the combined effect 

of the input distributions. To obtain the distributions of the secondary variables 

and the resultant parameters, Monte Carlo sampling was used. Monte Carlo 

sampling is a common random search method that explores a given space (e.g. 

an ensemble of inputs or an a priori distribution) and is regarded as one of the 

most efficient sampling methods as it can cover the whole search domain. In 

simple terms Monte-Carlo sampling refers to generating repetitive solutions of an 

equation (or model) with randomly sampled input variables from defined 

probability distributions (e.g. uniform or normal, with or without transformation of 

the data). The outputs can be analysed to determine the statistical properties of 

the estimation variable. In this study three statistical measures are calculated 

from the samples of the secondary variables or parameters; the mean, standard 

deviation and skewness. There are cases where the estimation equations are non-

linear and despite normally distributed inputs, the output distributions can be 

skewed. Experience has indicated that with environmental variables the skewness 

is almost always positive or the distribution is near normal. Therefore, whenever 

the calculated skewness was greater than 2.5 a log-normal PDF was assumed.  

The choice of the value 2.5 used for the definition of log-normal distribution is 

somewhat arbitrary but appears to be appropriate. The standard deviations of the 
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resultant secondary variables or parameter values then represent the extent of 

uncertainty in their estimates. In some instances the secondary variables are 

components of some parameters e.g. STsoil and STunsat which are the two parts 

that make up subsurface moisture store capacity parameter ST (Kapangaziwiri 

and Hughes, 2008).  

 

In general the estimation of a normally distributed uncertain parameter, P, can be 

summarized as in Figure 4.4. This can be written mathematically as: 

 

 N[µP, σP] ≈ f {N[vi(µi, σi)]}, for i= 1, 2, ......, n 

 

where a posterior normal distribution of the parameter P, with mean µP, and 

standard deviation σP is conditioned on the prior distributions of the uncertain 

input variables vi  with mean µi and standard deviation σi and n is the number of 

input variables required to estimate P. 

 

In order to simplify the estimation of the secondary variables and/or parameters 

and to better manage the input data and calculations, a Delphi program has been 

developed. Default values for some of the variables (for example transmissivity, 

porosity and storativity) are provided based on descriptive characteristics based 

on, for example, the degree of fracturing in hard rocks, or the relative 

permeability in primary aquifers. These default values are based on experience 

and information obtained from various literature sources but can also be 

overwritten if more reliable and site specific information about a variable is 

available. Figure 4.5 is an illustration of the input data requirements for the 

parameter estimation process that incorporates uncertainty.  

 

The diagram shows some of the primary input data that are required as well as 

some of the secondary basin data that are calculated. While the majority of the 

basin characteristic data are obtainable from the AGIS database, additional 

primary data required for the parameter estimation process should be obtained 

from any other suitable source. The full list of all the primary data is given below. 

Most of the estimation equations and their input requirements are fully discussed 

(and conceptually justified) in Kapangaziwiri (2008) and have been adapted from 

those used by Hughes and Sami (1994) in the development of parameter 

estimation approaches for the daily time step VTI model. Some of the input 

variables do not have uncertainty associated with them. This is not because they 

can be estimated without uncertainty, but to simplify some of the estimation 
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processes and because they are used with other variables that do have 

uncertainty definitions. 

 

Four terrain units: The AGIS land type data contains a maximum of five terrain 

units for each land type. The primary data inputs only consider four slope units 

which are given as the top, middle and bottom slopes, and the valley floor. The 

percentage of the total sub-basin area covered by each of these terrain units is a 

primary input. If there is more than one land-type in a sub-basin the primary 

input is therefore an area weighted average of the distribution of the different 

terrain units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Screenshot of the input primary data for the estimation of 

parameter with uncertainty 
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The minimum and maximum slope, given as a percentage, for each of the terrain 

units considered. The range of the slope values is taken as a measure of the 

uncertainty. The slope estimates are assumed to be normally distributed and that 

the minimum and the maximum values given in AGIS represent the 5th and 95th 

percentiles of the cumulative distribution.  

 

Soil types: Five different soil types can be specified, each with an associated 

depth range and texture class. No differentiation of soil depth across the different 

terrain units is given in the AGIS data. Differences in soils across different terrain 

units are specified as the proportion of the soil type lying in each terrain unit. For 

each soil, the texture class has to be specified. This study makes use of 5 broad 

soil texture classes which are sands, loamy sands, sandy clay loams, sandy clays 

and clays. The frequency characteristics of the soil depths are assumed to be 

normally distributed with the minimum and maximum values representing the 5th 

and 95th percentiles of the cumulative PDF.  

 

A vertical variability factor (%) for the soil is included. This is a percentage value 

that is intended to represent the assumed reduction in permeability and porosity 

with depth. For instance the vertical variability factor for a duplex soil would be 

expected to be low. There is no uncertainty assumed for this input. 

 

Indices of the surface cover and cover variability specified for the top, middle and 

bottom slopes. The surface cover varies from well-vegetated (index 0), through 

moderately vegetated (1) to crusting (2), while its variability is from low (0), 

through moderate (1) to high (2). These factors are important for the estimation 

of the infiltration parameters and can be obtained from an understanding of the 

vegetation cover. Also required is a representation of the organic content of the 

soil, its structural development and the extent of macro pore development 

specified for each sub-basin. These factors are input without uncertainty. The 

variation of these soil factors is given as an index value from low (0) to high (2) 

and are used in the estimation equation of the soil permeability (a secondary 

variable).   

 

An estimate (without uncertainty) of the regional groundwater slope (%) obtained 

from the GRAII (DWAF, 2005) database. 

 

The vertical and lateral drainage components of subsurface water movement (no 

uncertainty). This concept is based on the understanding that water in the 
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fractures within the unsaturated zone between the soil and the water table is 

prone to two directional components - a vertical one contributing directly to 

recharge of the saturated ground water zone and a lateral one that could 

contribute to the re-emergence of subsurface water at a spring or seep (Hughes, 

2010). The percentage values of these vertical and horizontal components need 

to be specified based on the geological characteristics of the unsaturated zone. 

These characteristics include the type of geological material, the extent of 

fracturing or weathering of the rock formation or its permeability. If the formation 

is completely weathered, then it is not feasible to have a lateral flow component 

unless the gradient is very steep. Deep weathered rock material does not support 

springs above the level of ground water. While default values based on limited 

knowledge are available, these are very generalized and can be over-written if 

more reliable data are available. It is acknowledged that appropriate values will 

be difficult to estimate in many basins.  

 

The storativity of the aquifer which will depend on the characteristics of the 

underlying rock formation. The representation of uncertainty is done through the 

specification of the standard deviation of the input value in an assumed Normal 

distribution. The standard deviation of storativity is by default, set at 10% of the 

mean value which can be changed should better information be available.  

 

An estimate of the depth to ground water (m) whose approximate value can be 

found in the GRAII database given as aquifer thickness. While these are not 

exactly the same thing, the GRAII aquifer thickness values are the only source of 

information and have been used in previous modelling studies with success. The 

value of depth to groundwater is given without estimation of uncertainty. 

 

The transmissivity (m2/d) of the unsaturated fracture zone estimated with a 

standard deviation set at a default value of 20% of the input value. 

 

Basin drainage density (km/km2) with default standard deviation set at 10% of 

the input value. This input is a measure of channel length and can be estimated 

from topographic maps. In this study its estimation included all potential drainage 

lines (identified by contour convergence) that are assumed to receive flow under 

conditions of basin saturation. While this makes the drainage densities higher 

than the use of ‘blue’ lines, it was assumed to be an appropriate approach given 

the use of the variable in the estimation of the maximum interflow rate 

(parameter FT) when soil moisture storage is full (Kapangaziwiri, 2008). 
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The mean monthly rainfall (mm) for the basin and the maximum rainfall (mm) 

estimated from the time series of the available records. Related to this is the 

mean monthly number of rain days and the mean duration (in hours) of rainfall 

events in the area. The International Water Management Institute (IWMI) Online 

Climate Service Model (http://wcatlas.iwmi.org/Default.asp) can provide 

reasonable estimates of number of rain days for any chosen point on the globe. 

In areas where, national records are available, these can be used instead. Also 

required is the mean annual potential evaporation (mm) for the basin. These 

climatic variables are used in the estimation of the surface runoff parameters of 

the model. 

 

The minimum and maximum mean annual recharge (mm) values. The values 

used are taken from the GRAII database (DWAF, 2005).  From the three values 

that are available per basin, the two lower ones are used since experience has 

shown that the largest is most unreliable. The two values are taken to represent 

the 10th and 90th percentiles of a Normal distribution of the mean annual 

recharge.  

 

It is also required to include the characteristics of the two dominant vegetation 

types in the basin (input to represent dominant and secondary vegetation). The 

area covered by each vegetation type is given as a percentage of the total basin 

area. A description of the types of vegetation cover is expressed in terms of five 

predefined vegetation classes. These classes are Dense Forest, Bush, Dense 

Crop/Groundcover, Sparse Groundcover and Bare Soil. To account for 

uncertainties in the estimation of the interception parameters, high and low 

estimates of the vegetation types are given for both winter and the summer 

seasons (Figure 4.6). Note that summer and winter values are equal since 

seasonal differences were found to be insignificant. 
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Figure 4.6 An illustration of the vegetation input data that is used to 

estimate the variability of the interception parameters. 

 

It should be noted that in some instances there are default mean values for input 

data and their estimates of uncertainty, these are representations of expected 

values drawn from previous studies, literature or experience. These defaults can 

be overwritten where more recent and reliable information is available. Similarly, 

default values for the standard deviation of some variables are included 

(storativity, transmissivity, for example). If a user feels confident about their 

ability to estimate these values, the default standard deviation values can be 

modified. The following sections explain the estimation of the secondary variables 

and the uncertain parameters from the given primary data. The approach taken is 

to explain the derivation of the secondary variables at the same time as the 

parameters they relate to. The estimation equation for the parameter is given 

first, followed by a description of how uncertainty is incorporated into the 

equation. The explanation is preceded by a brief synopsis of the estimation 

process as explained in the previous work (Kapangaziwiri, 2008). In all of these 

sections, the following expressions and terminology will be used: 

� Monte-Carlo methods are used to sample from the primary or secondary 

variable distributions. During sampling, if a sample is generated that is not 

feasible (for example, negative values) it is rejected and the sampling is 

repeated. It is quite possible, for example, for the sampling process to 

generate negative values if the variable range is input as 0 – 100 mm and 

these are taken to represent 98% of a Normal distribution. However, 

negative values cannot be used in the estimation equation.  
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� For the secondary variables and parameters that are determined from the 

estimation equation outputs, the mean, standard deviation and skewness 

are calculated from the sample values. If the skewness exceeds 2.5, the 

process is repeated using natural logarithm transformed values and the 

output values are the back-transformed means and standard deviations 

and the original skewness value of the untransformed distribution. 

� The mean and standard deviation of the Normal or log-Normal PDFs will be 

represented by µ and σ respectively. 

� The full description of a PDF will be given by N[µ, σ], where N indicates a 

Normal probability distribution.  

� The description of a single sample taken from a normal distribution is 

given as N[µ, σ]K. 

� For any specific variable (VAR), its mean and standard deviation will be 

given, respectively, as µVAR and σVAR. For instance, µDEP and σDEP 

represent the mean and standard deviation of soil depth (DEP). 

 

4.2.1  Estimating uncertainty for the parameter ST 

 

ST is conceptually viewed as a sum of two subsurface storages – the storage of 

the soil (STsoil) and that of the zone of intermittent saturation that lies between 

the soil and the water table (STunsat, Kapangaziwiri, 2008).  

 ST = STsoil + STunsat ...................................................................... 4.1 

 

4.2.1.1 Estimating uncertain STsoil 

 

The soil moisture storage capacity at saturation (STsoil) was deemed to be 

influenced by the porosity (POR %) and depth (DEP mm) of the soil. A correction 

factor, subjectively determined for each terrain unit, to account for the variation 

of porosity with depth (VVAR %) was also included (Kapangaziwiri, 2008). The 

final equation for the estimation of this moisture component was given by: 

 

STsoil (mm) = DEP * POR * VVAR/100 ............... ............................. 4.2 

 

POR is a basin area-weighted value dependent on the distribution of the soil 

texture classes and DEP is a mean estimate based on the percentage areas of the 

basin occupied by three main topographic units (upper slope, mid slope and 

valley bottom). DEP was estimated using the following algorithm: 
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  3 

DEP = ∑ (DEPi * TAREAi) ............................................................... 4.3 

  i=1 

 

where TAREAi is the area of the terrain unit i. The derivation of the uncertain STsoil 

(STS) is therefore estimated as: 

 

 N[µSTS, σSTS] = N[µDEP, σDEP] *  N[µPOR, σPOR] * VVAR/100 ..... 4.4 

 

where µ and σ are the means and standard deviations of the distributions of the 

variables POR and DEP (shown by subscripts). VVAR is not considered with 

uncertainty as its uncertainty effect is assumed to be negligible in most cases, 

compared to the other variables in Equation 4.4. In the case that uncertainty is 

necessary, a uniform distribution (specifying maximum and minimum possible 

values) can easily be used. The following sections explain the determination of 

the uncertain soil depth and porosity estimates.  

 

Estimating the distribution of soil depths 

The estimation of uncertainty is based on the range of the depth values for each 

of the 5 soil types. A distribution of soil depths is determined for each of the 

terrain units. Soil depth was assumed to be normally distributed with mean µDEP 

and standard deviation σDEP.  The first step is to determine the PDFs of soil depth 

for each of the terrain units. For each soil type, j, the mean of the soil depth, 

µDEPj, is given simply as: 

 

µDEPj  = (DEPj (min) + DEPj (max)) / 2  ......................................... 4.5 

 

where min and max are the minimum and maximum soil depth as input from the 

AGIS database. For instance, the mean soil depths for the five soil types (1-5) 

given in Figure 4.4 are 500, 650, 350, 450 and 900 (Table 4.1). 

 

It was assumed that the range of depths for each soil type represents the 98% 

limits of the normal distribution of all possible depths, equivalent to 2.33 standard 

deviations about the mean value.  The standard deviation of each soil type j, 

σDEPj can thus be calculated as: 

 

σDEPj = [(µDEPj –DEPj(min)) + (DEPj(max)– µDEPj)] / (2*2.33) .................. 4.6  
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This results in standard deviation values for the soil types 1 to 5 of 42.9, 64.4, 

64.4, 64.4 and 42.9 respectively (Table 4.1).  

 

Table 4.1 The distributions of soil depths and the proportions of soil 

type in terrain unit (Aij) used for the area weighting in the 

soil depth calculations  

 

 

 

 

 

 

 

 

 

To establish the mean µDEPi and σDEPi for each of the terrain units, the 

proportions of areas of soil type j occurring in each terrain unit i (Aij) are 

calculated. The net result is a matrix of area proportions given in Table 4.1. These 

proportions are then used as weights in the calculation of µi and σi. A Monte Carlo 

procedure was used to generate 2000 samples from the Normal probability 

distributions of depths within the soil types and the samples weighted by the 

relevant proportion Aij:    

                         5 

            DEPik =  ∑ N[µDEPj, σDEPj]K * Aij ................................................. 4.7 

                        j=1 

 

where DEPik represents the kth sample of soil depth from terrain unit i. From the 

2000 combined samples the mean, standard deviation, skewness and distribution 

type of the soil depths are determined for each of the three terrain units i.e. 

N[µDEPi, σDEPi]. These are the distributions of three secondary variables that 

represent the spatial distribution of soil depths in the basin. 

 

Estimating the distribution of porosity (POR) 

The variable POR is a soil hydraulic property and was determined from the 5 

texture classes for the whole sub-basin.  An area weighting procedure is used 

based on the proportion of area occupied by each soil type across all terrain units 

to take into account the distributions and influences of the different soil units.  For 

the five texture classes used (sandy (Sa), loamy sands (LmSa), sandy clay loams 

Soil 
type 

Depth 
range 

Mean 
value 

Standard 
deviation 

Top 

 
A1j 

Middle 

 
A2j 

Valley 

 
/BottomA3j 

1 400 - 600 500 42.9 0.47 0.46 0.39 

2 500 - 800 650 64.4 0.26 0.30 0.33 

3 200 - 500 350 64.4 0.11 0.15 0.11 

4 300 - 600 450 64.4 0.11 0.05 0.00 

5 800 - 1000 900 42.9 0.05 0.04 0.17 



 84

(SaClLm), sandy clay (SaCl) and clays (Cl)), the assumed mean values of 

porosity used in this study are 40%, 42%, 33%, 32% and 39% respectively 

(Kapangaziwiri, 2008).  The standard deviation was fixed at an arbitrary value of 

5% of the mean for each soil type.  

 

5000 Monte Carlo samples were taken from the porosity distributions within the 

soils across all the terrain types. The number of samples taken from each terrain 

type depends on the proportion of the terrain that is occupied by the soil type. If 

30% of terrain is covered by a particular soil type then 30% of the samples are 

taken from that terrain. The distribution properties of the basin porosity are 

determined from the 5000 samples. This distribution is written as N[µPORi, 

σPORi]. 

 

Estimating the vertical variation (VVAR) 

The variation of the soil porosity with depth (VVAR) is a weighted average for the 

basin that is used with no uncertainty. This is taken as a mean value across the 

terrain units based on the proportion of the basin occupied by each of the terrain 

units. For the example, from the data in Figure 4.5, it is calculated as follows: 

 

VVAR = (0.35*90) + (0.5*80) + (0.15*70) + (0.05*70) = 82% ........ 4.8 

 

Final estimation of STsoil PDF 

The final distribution of STsoil is then determined through a combination of 

samples of the terrain unit soil depths and the basin porosity. 1500 area weighted 

Monte Carlo samples are taken from each of the distributions of the terrain units 

and combined to an equally sized sample of basin porosity together with the 

VVAR factor to generate samples of STsoil according to the relationship: 

                3 

(STsoil)k =  ∑{N[µDEPi, σDEPi]k  * TAREAi} * N[µPORi, σPORi]k * VVAR/100 ... 4.9 

                i=1 

 

where k is the kth sample and the mean, standard deviation, skewness and 

posterior distribution type of STsoil are determined from the 1500 samples. 

 

4.2.1.2 Estimating uncertain STunsat 

 

The estimation of STunsat is based on depth to the water table (DGW m), the 

storativity (St) of the unsaturated zone and a factor (Ratio) that accounts for the 
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orientation of the fracture drainage vector slope (VS) relative to the regional 

ground water slope (GS) and the basin surface slope (BS). The concept of VS 

stems from the understanding that percolating water through the unsaturated 

zone is subject to both vertical and lateral flow components whose vector sum is 

VS. The Ratio is given by: 

 

Ratio = [Tan(BS) – Tan(VS)] / [Tan(BS) – Tan(GS)] ....................... 4.10 

 

and the equation for the estimation of STunsat is: 

 

STunsat = DGW * 1000 * St * Ratio ................................................ 4.11 

 

In this study DGW is estimated without uncertainty. Mean basin values of 

storativity are obtained from the GRAII database (DWAF, 2005). These mean 

values are assumed to be normally distributed with a standard deviation fixed at 

a default value of 5% of the mean. The only other variable that is estimated with 

uncertainty is BS. This is estimated from the slope information from the AGIS 

(2007) database. 

 

Estimating the PDF of basin slope (BS)  

The calculation is based on 4 of the 5 terrain units from the AGIS land type data. 

If there are five terrain units in any given basin, then any two can be combined 

depending on the closeness of the information for the two slopes. In most cases 

the bottom slopes and the valley floors have been combined. The mean basin 

slope for each terrain unit (µSLOPEi) is calculated from the maximum and 

minimum as follows: 

 

  µSLOPEi = (maxi + mini) / 2  ....................................................... 4.12   

 

with maxi and mini being the maximum and minimum slope values for terrain unit 

i. A minimum slope value of 0.1% is assumed for all slopes reported as zero. The 

standard deviation of the slopes for each of the terrain units i is based on the 

assumption that the maximum and minimum slopes represent 98% of a Normal 

distribution.  These limits represent 2.33 standard deviations about the mean of a 

fairly large sample size and the standard deviation is thus determined as: 

 

 σSLOPEi = [(maxi - µSLOPEi) + (µSLOPEi - mini)] / (2*2.33) ............ 4.13  
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The result is a Normal distribution, defined by mean µSLOPEi and standard 

deviation σSLOPEi, of slopes for each of the four terrain units. Where the 

maximum slope is greater than 40%, natural logarithm transformations of the 

slope values are used and the distribution type for that terrain unit is assumed to 

be log-Normal. From these distributions of secondary variables, 5000 Monte Carlo 

area weighted samples are generated to estimate the distribution of the slope of 

the basin. The weighting is based on the proportion of the basin covered by each 

terrain unit. Using the example data in Figure 4.5, 1750, 2500, 500 and 250 will 

be taken from terrain units 1, 2, 3 and 4 which cover 35%, 50%, 10% and 5% of 

the basin respectively. The mean, standard deviation, skewness and distribution 

type of BS are then determined from these 5000 samples.  

 

Estimating PDF of STunsat 

5000 samples of the ratio are then generated through Monte Carlo samples from 

the distribution of the basin slope using: 

 

[Ratio]k = [Tan(N[µBS, σBS]K) – Tan(VS)] / [Tan(N[µBS, σBS]K) – Tan(GS)] ..  

                                                                                         ..................... 4.14 

 

where k is the kth of 5000 samples.  These samples were then combined with an 

equal number of samples from the distribution of storativity to generate 5000 

samples of STunsat. From these the mean, standard deviation, skewness and 

distribution type were determined.  

 

4.2.1.3 The final PDF of parameter ST 

 

Finally 5000 samples are taken from the distributions of both STsoil and STunsat to 

generate 5000 samples of the parameter ST. The final PDF of ST can thus be 

written as: 

 

 N[µST, σST] = N[µSTS, σSTS)] + N[µSTU, σSTU] ......................... 4.15 

 

where the subscripts STS and STU refer the components STsoil and STunsat 

respectively. The mean, standard deviation, skewness and distribution type for 

the parameter ST are determined from these 5000 samples.  
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4.2.2 Estimating the uncertainty associated with the parameter FT 

 

The parameter FT (mm month-1) refers to the depth of interflow when the basin is 

saturated. The approach adopted for its quantification from physical basin 

properties uses the same two components (soil and unsaturated) that are used 

for ST: 

 

 FT = FTsoil + FTunsat ...................................................................... 4.16 

 

4.2.2.1 Estimating uncertain FTsoil  

 

FTsoil (mm month-1) was estimated using a combination of basin average values of 

slope (BS %), soil permeability (K m d-1), soil depth in the lower topographic 

units (DEP mm) and an assumed contributing channel length (based on drainage 

density, DD km km-2). The estimation equation for FTsoil is given by: 

 

FTsoil = CA * K * 30 * BS / 100000 ............................................... 4.17 

 

where CA is the contributing area per unit basin area estimated as; 

 

CA (m2 km-2) = 2 * DD * DEP ...................................................... 4.18 

 

Incorporating uncertainty into the estimation of this component of interflow 

requires that the uncertainties associated with the estimation of BS, DEP, K and 

drainage density be accounted for. The derivation of the uncertain FTsoil can be 

presented as: 

 

N[µFTS, σFTS] = 60 * N[µDD, σDD] * N[µDEP, σDEP] * N[µK, σK]  

* N[µBS, σBS]/100000 ........................................... 4.19 

 

with µ and σ being the means and standard deviations of the distributions of the 

variables DD, DEP, K and BS and FTS refers to FTsoil. The derivation of the 

distribution functions of soil depth and basin slope within a basin were explained 

in Sections 4.2.1.1 and 4.2.1.2. Only the distributions of DD and K will be 

explained in detail here. 
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Estimating the PDF of drainage density (DD) 

Drainage density (DD) is a measure of channel length and its mean value can be 

estimated from topographic maps or any available literature. In the parameter 

estimation procedures the derivation of mean drainage density (µDD) included all 

potential drainage lines (identified by contour convergence on a topographic map) 

that are assumed to receive flow under conditions of basin saturation. This is 

deemed a realistic assumption under basin saturation conditions when seasonal 

streams emerge and result in drainage densities that are higher than mere use of 

‘blue’ lines (Kapangaziwiri, 2008). Uncertainty in drainage density estimates was 

assumed to be normally distributed (N[µDD, σDD]) with a default standard 

deviation (σDD) fixed at an arbitrary value of 10% of the mean.  

 

Estimating the PDF of Permeability (K) 

For each of the input soil types j, the mean permeability in each terrain unit i 

(µKi) is calculated using the following equation taken from Hughes and Sami 

(1994): 

    5 

(µKi) = ∑e (PIj*0.55 – 0.054) ............................................................... 4.20  

  J=1 

 

where PIj is some assumed index of permeability (PI) of soil type j estimated 

from the soil’s characteristics and is given by: 

 

PIj = M + 0.5 * (F+G+H) + Y ............................................................ 4.21 

where  

M = 0.09A + 0.05B +0.02C + 0.015D + 0.01E ............................... 4.22 

 

and A to E are percentage areas of the basin covered by sandy (A), loamy sand 

(B), sandy clay loam (C), sandy clay (D) and clay (E) soils, while F, G and H are 

assumed to vary from low (0) to high (2) and represent the level of macro-pore 

development (F), the organic content (G) and the structural development of the 

soil (H). Y represents the sand grade of the soil, which has been fixed at an index 

value of 1 in this study. Thus, for a given soil or soil combination within a terrain 

unit i, a mean permeability (µKi), a secondary variable, is calculated. The mean 

basin permeability (µK) is then calculated as an area weighted value based on the 

proportion of the area of each terrain unit occupied by a soil of type j. The 

standard deviation for normally distributed permeability per terrain unit i (σKi) is 

fixed at a default value of 10% about the mean value.  From 5000 Monte Carlo 
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generated area weighted samples the distribution (N[µK, σK]) of basin 

permeability (K) is determined.  

 

4.2.2.2 Final PDF of FTsoil 

 

For the final PDF of FTsoil, the 5000 area weighted samples of soil depth from each 

terrain unit are first combined with those of basin slope. It was noted that due to 

the independence assumed for the sampling process it is possible to get 

conceptually implausible combinations of soil depth and basin slope. For example, 

uncontrolled sampling can produce combinations of steep slopes with deep soils, 

which are unlikely and should be excluded from the sampling process to avoid 

inappropriate skewness in the PDF of FTsoil. This was achieved with an equation 

that generates a maximum possible soil depth for any given slope over 20%: 

 

 DEPmax = 85000 / BS1.7 .............................................................. 4.23 

 

Using this equation results in maximum soil depths for slopes of 20, 30, 40 and 

60% being limited to 520, 260, 160 and 80mm respectively. In the absence of 

sufficient real data on the relationships between maximum soil depths and 

topographic slope, equation 4.13 has been based on the author’s intuition and 

certainly achieves the objective of preventing excessively high FTsoil values in the 

sample. Where an unacceptable sample is obtained, it is rejected and another 

sample is taken to replace it. The 5000 samples generated from the combination 

of depth and slope are then combined with equally sized samples from the 

distributions of drainage density and permeability, resulting in 5000 samples of 

FTsoil (FTS) from which the basin mean, standard deviation, skewness and 

distribution type are calculated. This defines the PDF of FTsoil as N[µFTS, σFTS]. 

 

4.2.2.3 Estimating uncertain FTunsat 

 

The estimation of FTunsat (mm month-1) is based on the use of basin averages for 

the vector slope of the fracture zone (VS %) and transmissivity (T m2 d-1) of the 

subsurface rock formations:  

 

FTunsat = 2 * DD * T * 30 * VS / 100 ............................................. 4.24 

 

Of the input basin physical variables, VS is estimated without uncertainty and the 

uncertain, normally distributed FTunsat (FTU) is expressed as: 
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N[µFTU, σFTU] = 2 * N[µDD, σDD] * N[µT, σT] * 30 * VS/100 ....... 4.25 

 

where the distribution N[µDD, σDD] was already referred to in Section 4.2.2.1. µ 

and σ are both given in mm month-1. 

 

Estimating the PDF of transmissivity (T) 

The transmissivity variable accounts for the variability of the underlying geology 

and its basin mean (µT) value reflects the hydraulic characteristics of subsurface 

formations. Table 4.2 lists the default values for µT and σT based on typical 

geological conditions in the region. The standard deviation values have been fixed 

at 20% of the mean in the absence of any real data. In cases where more 

accurate data are available, these can be over-written. The distribution of T can 

thus be written as N[µT, σT]. 

 

Table 4.2 Default values of transmissivity for different unsaturated 

zone characteristics 

 

Material Mean  Standard Deviation 

Fractured material – high fracture density 5.0 1.0 

Fractured material – moderate fracture density 2.5 0.5 

Fractured material – low fracture density 1.0 0.2 

Permeable material – high permeability 2.0 0.4 

Permeable material – moderate permeability 1.0 0.2 

Permeable material – low permeability 0.5 0.1 

 

4.2.2.4 The PDF of FTunsat  

 

The final distribution of FTunsat, is determined from 5000 Monte Carlo samples. 

These are generated from the combination of samples of drainage density and 

transmissivity with a fixed value of VS. From these 5000 samples the basin mean, 

standard deviation, skewness and distribution type of FTunsat are calculated.   

 

4.2.2.5 The final distribution of parameter FT  

 

The posterior distribution function of the parameter FT is derived from a 

combination of 5000 Monte Carlo samples each taken from the distributions of 

FTsoil and FTunsat using the following relationship: 
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N[µFT, σFT] = N[µFTS, σFTS]+ N[µFTU, σFTU] ............................. 4.26 

 

This results in 5000 samples for the population of values for model parameter FT, 

from which the basin mean value, standard deviation, skewness and distribution 

type are determined. 

 

4.2.3 Estimating uncertainty in parameter POW 

 

POW represents the non-linearity in the relationship between runoff (Q mm 

month-1, with a maximum value of FT) and moisture storage (S mm with a 

maximum value of ST) and is assumed to be influenced by the moisture re-

distribution capacity within a sub-basin as it dries out. A procedure similar to that 

used by Hughes and Sami (1994) has been adopted and it is based on the 

probability distributed principle (Moore, 1985) that suggests that the overall sub-

basin moisture content (S) can be represented by a frequency distribution of 

different soil moisture contents. At high S values (close to ST) there will be a 

higher frequency of saturated conditions (and therefore higher potential to 

generate runoff), while at low S values the frequency of saturation will be low. 

Hughes and Sami (1994) also assumed that the spatial variability of S (expressed 

as the standard deviation of a Normal distribution around the mean value of S) 

would be lower during both dry and wet conditions and at a maximum at a mean 

sub-basin S of 0.75 * ST. The approach requires the definition of a maximum 

standard deviation (SDMAX) at the sub-basin moisture content of 0.75 * ST and 

the relationship used to calculate the standard deviation of the moisture content 

distribution (SD) for any value of S (Hughes and Sami, 1994) is: 

for S/ST > 0.75 

 

          SD = (1.1 – S/ST) * SDMAX / (1.1 - 0.75) ............................ 4.27 

 

and for S/ST ≤ 0.75    

 

              SD = (S + (0.75 – S/ST) * 0.2) * SDMAX / 0.75 .................... 4.28  

 

Using the PDF, N[S/ST, SD], it is possible to estimate the proportion of the sub-

basin that contributes to runoff (Q/FT) for any value of S/ST as that part of the 

distribution that exceeds 0.9. The value 0.9 is assumed to be the threshold of 

relative moisture content at which interflow occurs. The relationship between 
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S/ST and Q/FT can therefore be used to estimate the POW parameter given that 

the Pitman model algorithm for runoff generation (Q) in any given month is: 

 

 Q/FT = (S/ST)POW ....................................................................... 4.29 

 

It has been assumed that lower values of SDMAX would be expected when there 

is little spatial variation in moisture content caused by slow moisture re-

distribution processes after rainfall events (i.e. sub-basins with low topography 

and/or poorly drained soils), while higher values would be expected in steep 

topography with well drained soils. The approach is therefore based on estimating 

SDMAX using soil permeability and sub-basin slope, defining the S/ST versus 

Q/FT relationship and then finding an appropriate value of POW through a trial-

and-error curve fitting approach (Kapangaziwiri, 2008; Kapangaziwiri and 

Hughes, 2008).    

 

4.2.3.1 Estimating the maximum standard deviation of soil moisture 

content (SDMAX) 

 

The estimation of SDMAX is based on values of sub-basin slope (BS) and soil 

permeability (K) and the derivation of their uncertainty distributions has been 

explained in previous sections. 5000 Monte Carlo samples are generated for each 

of BS and K and these are used to define samples of SDMAX based on the same 

classes used in Kapangaziwiri (2008) from which the PDF (N[µSDMAX, σSDMAX]) 

of SDMAX is determined in the usual way.    

 

The calculation of SDMAX is based on two components; a slope component (SL) 

and a permeability component (PERM). Table 4.3 explains how these components 

are calculated from classes of slope and permeability. The two components are 

then combined using: 

 

 SDMAX = 0.86 – 6 * (SL * PERM) / 100 ........................................ 4.30 

 

The highest value of SDMAX is therefore 0.8 for well drained soils and steep 

slopes, while the lowest value is 0.32, corresponding to gentle slopes and poorly 

drained soils. Equation 4.30 as well as the classes and values given in Table 4.3 

have been derived from experience with the use of this approach and have no 

real theoretical basis. 
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Table 4.3 Calculation of SL and PERM components as part of the 

estimation of SDMAX. 

 

Slope component based on BS SL value 

BS ≤ 4% 3 

4% < BS ≤ 10% 2 

BS > 10% 1 

Permeability component based on K (mm d-1) PERM value 

K ≤ 5 3 

5 < K ≤ 15 2 

K > 15 1 

 

 

4.2.3.2  Estimating uncertain POW 

 

The final approach to estimating POW has to account for both the variability in 

runoff from the soil component of unsaturated storage (STsoil) and the deeper 

unsaturated zone (STunsat). 1000 samples are generated from each of the 

distributions of FTsoil, FTunsat and SDMAX. The samples of the first two are 

combined to generate 1000 samples of the proportion of total interflow 

contributed by the two components (FTunsat and FTsoil) of FT. The contribution of 

the unsaturated component is given by FTsoil/(FTunsat+ FTsoil) and that of the soil 

component is by FTunsat/(FTunsat+ FTsoil). 

 

For a range of S/ST values, equations 4.15 and 4.16 are used with the samples of 

SDMAX to construct a relationship between S/ST and Qsoil/FTsoil. This relationship 

is combined with an assumed relationship between S/ST and Qunsat/FTunsat of the 

type: 

 

 Qunsat/FTunsat = (S/ST)2 ................................................................. 4.31 

 

The relationships are combined using the weighting factors discussed above, such 

that for any value of S/ST the total interflow runoff (Q/FT) becomes: 

 

 Q/FT = (Qsoil/FTsoil) * FTsoil/(FTunsat+FTsoil)  

+ (Qunsat/FTunsat) * FTunsat/(FTunsat+FTsoil) ..................... 4.32 
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An iterative procedure is used to find the value of POW that most closely matches 

this relationship using the Nash coefficient of efficiency as the objective function 

that has to be maximized. The above procedure generates 1000 samples of POW 

for each of the samples of FTsoil, FTunsat and SDMAX, from which the mean, 

standard deviation, skewness and distribution type of POW are determined. 

 

4.2.4 Estimating the infiltration parameters ZMIN, ZAVE and ZMAX 

 

The infiltration parameters represent the spatially integrated process of 

infiltration. They control the absorption rate at the surface, the volume of water 

entering the moisture store reservoir and the volume of infiltration excess flow 

generated within a particular sub-basin. The parameters control the magnitude of 

the variable infiltration in the model, and effectively dictate the partitioning of 

rainfall into infiltration and surface runoff. Larger values of ZMIN and ZMAX 

increase the model infiltration and diminish the generation of direct runoff. A non-

symmetrical triangular distribution of basin absorption, from a minimum of ZMIN 

to a maximum of ZMAX, is used in the model. ZAVE is the intermediate 

absorption rate of the distribution and determines the shape and symmetry of the 

triangular distribution. These parameters are assumed to be influenced by soil 

surface conditions and the characteristics of the basin average rainfall. The basis 

for the estimation approach is to use a variation of the physically based Kostiakov 

(1932) infiltration equation to estimate a relationship between monthly rainfall 

depths and surface runoff. To achieve this, the monthly rainfall depths are 

approximately disaggregated using information about the expected rainfall 

characteristics of the sub-basin (e.g. mean number of raindays and typical 

rainstorm durations). The Pitman model infiltration function is then used to 

generate a similar surface runoff relationship using an iterative fitting procedure.  

 

4.2.4.1 Estimating uncertain infiltration parameters 

 

Basin monthly rainfall (mrain, mm), maximum possible monthly rainfall (mm), 

number of rain days (rdays, days month-1) and mean storm duration (rsd, hrs) 

are required for the estimation of basin rainfall intensity given in mm h-1. The 

monthly rainfall is disaggregated into daily rainfall using the number of rain days 

input variable and each day is then divided into 5 equal time periods, based on 

the mean storm duration, for which the rainfall intensities are calculated. These 

rainfall intensities are then compared with a frequency distribution of infiltration 

rates to generate an estimate of infiltration excess surface runoff.  In this study, 
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the uncertainty has been incorporated through the variability within the 

infiltration rate parameters derived from the sub-basin soil properties. While it is 

recognized that there is also expected to be a great deal of uncertainty in the 

variables used to disaggregate the monthly rainfall, these were ignored in favour 

of computational simplicity. The basis of the calculation of the infiltration rates is 

a modified equation of the Kostiakov (1932) infiltration curve as used within the 

Variable Time Interval (VTI) model of Hughes and Sami (1994). The equation is 

expressed as follows: 

 

 Infiltration rate (mm h-1) = B * C * TB-1 ......................................... 4.33 

 

where T (mins) is the cumulative time from the commencement of the storm 

event and B and C are physically based constants whose mean values and their 

assumed spatial variability (expressed as the standard deviation of a log-Normal 

distribution) are estimated from soil texture properties and surface cover. Bvar and 

Cvar are used to define a log-Normal frequency distribution of infiltration rates at 

any given time T and the probability distributed principle of Moore (1985) is 

applied to determine the proportion of the sub-basin that contributes to 

infiltration excess runoff (Hughes and Sami, 1994). The spatial variability factors, 

Bvar and Cvar, are not however, estimated with uncertainty. 

 

The constants of the infiltration equation are estimated with uncertainty to give 

an assumed Normal distribution of infiltration rates (IR) which can be expressed 

as: 

N[µIR, σIR] = N[µB, σB] * N[µC, σC] * TM .................................... 4.34 

 

where M = N[µB, σB] – 1. 

 

The first step is to estimate the soil surface cover characteristics and their spatial 

variability for each of the terrain units i. The cover characteristics have been 

divided into 3 broad classes to simplify the process and default indices are used 

with these classes (Figure 4.7). The soil surface cover is taken to vary from well 

vegetated (index 0), through moderately vegetated (1) to crusting surfaces (2), 

while variability ranges from low (0), through moderate (1) to high (2). 
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Figure 4.7 Screenshot of the classifications of soil surface cover and its 

variability that are used to determine the constants of the 

infiltration equation. 

 

Estimating the PDF of infiltration constants B and C 

The soil surface cover indices are summed across all the terrain units and then 

scaled to an integer that lies between 0 and 2. If the sum is greater than 2, then 

it is assumed to be 2. The estimate of the mean of the infiltration equation 

constant B is then calculated for each of the soil types in the basin. The 

estimation is based on a value of 0.79 for sands, 0.65 for sandy loams, 0.54 for 

sandy clay loams, 0.52 for sandy clays and 0.50 for clays. The texture based 

value is increased or decreased depending on the vegetation cover class scaling 

factor which would be either 0.2 (20%) or -0.2 for well vegetated or poorly 

vegetated (crusting) soils respectively. There is no scaling required for 

moderately vegetated soils. The effective scaled values for mean B across 

different soil types are given in Table 4.4. 

 

 Table 4.4 Values of the infiltration constant B for the different soil 

types and vegetation classes. 

 

  Vegetation Cover   

Soil type Well vegetated Moderately vegetated Crusting 

sands 0.948 0.790 0.632 

loamy sands 0.780 0.650 0.520 

sandy clay loams 0.648 0.540 0.432 

sandy clays 0.624 0.520 0.416 

clays 0.600 0.500 0.400 

 

The standard deviation of the distribution function of B is taken at a default 5% of 

the calculated mean value. Finally, 5000 Monte Carlo area weighted (based on 
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the proportion of the area of terrain unit i that is occupied by a soil type) samples 

are generated from which the mean, standard deviation, skewness and 

distribution type for constant B are determined.  

 

The determination of the constant C is similar to that of B. The soil texture 

classes within a given basin are determined and the surface cover indices are 

summed across the terrain units to basin index, i.e. a summary description of the 

basin surface cover conditions.  This index is used to determine the scaling 

factors for the soil types in the basin. These factors are 0.1 or -0.1 for well 

vegetated or crusting soils respectively, with no scaling required for the 

moderately vegetated class. The estimation is based on a value of 4.5 for sands, 

3.5 for sandy loams, 2.5 for sandy clay loams, 2.0 for sandy clays and 1.0 for 

clays. The effective scaled values for the C values across different soil types are 

given in Table 4.5. 

 

Table 4.5 Values of the infiltration constant C for the different soil 

types and vegetation classes. 

 

 

The standard deviation of the infiltration constant C is set at 5% of the calculated 

mean value. 5000 area weighted Monte Carlo samples generated from the 

distribution are used to determine the basin mean, standard deviation, skewness 

and distribution type for C. 

 

Estimating the variability of infiltration B and C 

The soil surface cover and cover variability indices are both summed across the 

terrain units to determine their sub-basin equivalents varying between 0 and 2. 

The matrices of the correction factors associated with Bvar for the cover and the 

variability of this cover are (0, 0 and 0.25) and (-0.2, 0 and 0.2) respectively. 

These apply to the 3 classes of vegetation cover and variability shown in Figure 

4.7. This implies that for surface cover there is no scaling deemed necessary for 

 Vegetation Cover  

soil type Well vegetated Moderately vegetated Crusting 

sands 4.95 4.51 4.05 

loamy sands 3.85 3.50 3.15 

sandy clay loams 2.75 2.50 2.25 

sandy clays 2.20 2.00 1.80 

Clays 1.10 1.00 0.90 
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the well and moderately vegetated classes whereas the crusting areas the values 

are scaled by 25%. For variability the values are scaled by 20% and -20% in well 

or poorly (crusting) vegetated soils with no scaling in moderately vegetated soils. 

The scaled values of Bvar for both the cover and variability over different soil types 

are given in Table 4.6. The final value of Bvar is an area weighted basin average 

summed across all the terrain units. 

 

Table 4.6 Surface cover and variability factors used in the calculation  

of Bvar based on the different vegetation cover and 

variability classes 

 

 

 

The correction factors associated with Cvar are (0.1, 0, and -0.1) and (-0.2, 0 and 

0.2) related to the surface cover and its variability respectively. The factors 

across different cover and variability classes, used for the estimation of Cvar are 

given in Table 4.7. The final value of Cvar is an area weighted mean taken across 

all terrain units and soil types. 

 

Table 4.7 Surface cover and variability factors across different soils 

used for the calculation of Cvar.  

 

  Vegetation Cover  Cover variability  

soil type 

Well 

vegetated 

Moderately 

vegetated Crusting High  Moderate Low 

sands 4.95 4.51 4.05 3.60 4.51 5.40 

loamy sands 3.85 3.50 3.15 2.80 3.50 4.20 

sandy clay loams 2.75 2.50 2.25 2.00 2.50 3.00 

sandy clays 2.20 2.00 1.80 1.60 2.00 2.40 

clays 1.10 1.00 0.90 0.80 1.00 1.20 

 

 Vegetation Cover  Cover variability  

soil type 

Well 

vegetated 

Moderately 

vegetated Crusting High  Moderate Low 

Sands 0.008 0.008 0.010 0.015 0.012 0.010 

loamy sands 0.018 0.018 0.022 0.022 0.019 0.015 

sandy clay loams 0.012 0.012 0.015 0.022 0.019 0.015 

sandy clays 0.012 0.012 0.015 0.015 0.012 0.010 

Clays 0.008 0.008 0.010 0.015 0.012 0.010 



 99

4.2.4.2 Estimating uncertain ZMIN, ZAVE, ZMAX 

 

The process explained in the preceding paragraphs generates PDFs of B and C 

parameters (defined by their mean and standard deviations) of the infiltration 

equation and their spatial variability, Cvar and Bvar. These are used to develop a 

relationship between monthly rainfall depths and total monthly infiltration excess 

runoff for each of 100 Monte Carlo samples taken from the distributions of B and 

C (independently). A simple water balance approach is also used in the approach 

to obtain an approximate estimate of the proportion of the sub-basin that is likely 

to be saturated and therefore will generate surface runoff for a given monthly 

rainfall value. This estimate is combined with the estimate of infiltration excess 

runoff to provide an estimate of total surface runoff for a given monthly rainfall 

total. An iterative process is then used for each sample of B and C to determine 

the best values of ZMIN, ZAVE and ZMAX that will reproduce the shape of the 

rainfall-surface runoff relationship (Figure 4.8) resulting in samples of these 

parameters. Note that at this point the parameter ZAVE is determined in relative 

terms only. The optimization is based on a simple objective function that 

minimizes the divergence between the two graphs up to a limit defined by an 

input variable defining the maximum expected monthly rainfall estimated from 

the rainfall time series. The outputs from this process are posterior distributions 

of ZMIN and ZMAX, while ZAVE (defining the skewness, or asymmetry, of the 

triangular distribution of absorption rates) is determined without uncertainty as 

the value that gives the best fit using the mean values of ZMIN and ZMAX.  This 

final value of ZAVE is an absolute value. Figure 4.9 shows the uncertainty in the 

triangular shape of the infiltration process distribution as it is used in the 

estimation process. There are distributions around ZMIN and ZMAX while ZAVE is 

a fixed absolute value giving rise to the variation in the triangular distribution. 

Any combination of triangles between A-A and B-B together with ZAVE is feasible. 

 

 

 

 

 

 

 

 

 

 



 100

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450

Rainfall Depth (mm)

R
u
n
o
ff
 D

e
p
th

 (
m

m
)

Infiltration Function 

Z-Function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  Graphs of runoff generated by the infiltration function and 

using the Pitman model function based on ZMIN, ZAVE and 

ZMAX 

 

While the estimation procedure incorporates the concepts of both infiltration 

excess and saturation excess runoff, the Pitman model does not and in the model 

the surface runoff estimations are explicitly independent of moisture storage 

conditions. In developing the parameter estimation approach, the issue of 

saturation excess runoff could not be ignored and it is assumed that this is 

related to the difference in time scales used in the estimation procedure 

compared to the Pitman model algorithm. It is possible therefore that the Pitman 

model surface runoff algorithm is implicitly accounting for saturation excess 

runoff despite not being directly related to the simulated soil moisture level. It 

should also be noted that the values of the infiltration parameters are closely 

linked to the rainfall distribution factor that controls the way in which the total 

monthly rainfall is distributed over the four model iterations. Lower values of RDF 

will reduce the rainfall rate in the two main wet periods, while increasing it in the 

other two periods. Within a complete month the relationships between generated 

runoff, the RDF parameter and the infiltration parameters can be quite complex. 
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Figure 4.9 A diagrammatic representation of the uncertainty associated 

with the triangular distribution of basin absorption rates. A1-

B1 and B2-A2 are the ranges of variability for ZMIN and 

ZMAX respectively. A-A and B-B represent the extremes of 

this representation. 

 

4.2.5 Estimating uncertainty for the parameters PI1 and PI2  

 

4.2.5.1 Establishing an estimation procedure for PI1 and PI2 

 

The interception loss function depends on an interception capacity parameter 

(PI). The version of the model used in this study (Hughes, 2004; Hughes and 

Parsons, 2005) allows for this parameter to be seasonally variable and is 

determined for any two main vegetation regimes in a basin. The depth of rainfall 

intercepted in any month is based on an empirical relationship between the 

relevant PI parameter and rainfall depth, while interception storage satisfies the 

evaporation demand at the potential rate. The total interception loss (I 

mm/month) from any basin, based on empirical evidence, is estimated in the 

model by the algorithm (Pitman, 1973): 
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 I = 13.08 * PI1.14 * [1 – e[p * (0.00099 * PI * 0.75 – 0.11)]] ........................... 4.35 

 

where p is the total precipitation depth for the month in mm and PI is the 

interception storage capacity of the vegetation given in mm.  

 

The process of interception is affected by the percentage of the ground covered 

by the vegetation and the leaf area index (LAI) of the vegetation type (Rutter et 

al., 1975). Both of these can depend upon the stage of development of the 

vegetal cover and the season of the year. It should also be noted that at the 

basin scale there will almost always be large spatial variations in interception 

capacity. There are a number of literature sources that have documented 

interception losses for different vegetation types (for example, Rutter et al., 

1975; Schulze, 1995; Hall, 2003).  A direct comparison between the parameter 

values and measured interception capacity is somewhat confused by the model 

assumption that the stored water evaporates completely in a single day. In 

reality, within a monthly time step model, the extent to which this assumption 

can be considered valid will depend upon the typical patterns and distribution of 

rainfall within a month. If the total monthly rain falls in concentrated periods of 

several days it is likely that the model will over-estimate interception losses.  

 

The approach that was therefore taken to estimate the interception parameters is 

an empirical one. The principle is to develop a relationship between the model 

parameter PI and interception loss based on vegetation attribute data. To achieve 

this, it is necessary to generate the losses at the smallest possible temporal scale 

so that the variations of the interception process can be accounted for. However, 

the aim of the estimation procedures is to use data that are accessible within the 

region with relative ease and rainfall records at a scale of less than a day are not 

very common. Therefore, daily rainfall records were used. The VTI (Variable Time 

Interval, Hughes and Sami, 1994) model uses physically-based algorithms for the 

determination of daily interception loss from rainfall data which are based on the 

method of Rutter et al. (1975). This depends on the vegetation characteristics 

defined for five default cover classes based on an understanding of vegetation 

types that occur within the region. These are dense forest, bush/sparse forest, 

dense crop/groundcover, sparse crop/groundcover and bare soil and estimates of 

these (and their seasonal variation) are primary inputs for the parameter 

estimation procedures (see Figure 4.5). Related to these, and used in the model, 

are the proportion of vegetation cover, the leaf area index and the vegetation 
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canopy capacity. These properties are estimated using the proportion of the basin 

covered by the five broad vegetation cover classes. Default LAI values associated 

with each of the cover classes are used in the estimation process and these are 

shown in Table 4.8. The LAI values are broadly in agreement with the values 

reported for similar vegetation classes in the literature (for example Scurlock et 

al., 2001).  

 

Table 4.8 Default LAI values for different vegetation cover classes that 

are typical in the region 

 

Vegetation type LAI 

Dense Forest 5.0 

Bush/Sparse forest 3.0 

Dense crop/groundcover 1.5 

Sparse crop/groundcover 0.5 

Bare soil 0.0 

 

 

Mean monthly interception losses from daily rainfall records were calculated using 

the VTI (Hughes and Sami, 1994) model. The Pitman (Pitman, 1973) model 

parameter PI was manually adjusted until a similar magnitude of loss was 

achieved by the monthly model. This process was carried out for some 20 basins 

selected to represent the hydro-climatic and physiographic conditions prevailing 

in South Africa. Based on the results from these selected basins, relationships 

between rainfall, interception loss and the interception capacity parameter (PI) 

were explored and developed. The effect of the frequency of rainfall was 

considered important and the average number of raindays was included as a 

predictor variable. Figure 4.10 shows the relationship between the monthly 

interception losses (generated by the VTI model based on daily records), the 

average percentage of the number of rain days per year (NRD) and mean annual 

precipitation (MAP) at different values of calculated LAI determined by different 

combinations of vegetation types.  
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Figure 4.10 The relationship between VTI generated interception loss 

and MAP and NRD at different values of LAI. 

 

After a number of exploratory tests with different equation formats, it was 

decided to use a power function (equation 4.36) with a fixed exponent and a 

gradient (Grad1) that is a function of LAI (equations 4.37 and 4.38): 

 

 Interception Loss = Grad1 * (MAP * NRD)0.54 ................................. 4.36 

 

From an investigation of the variation of the most appropriate Grad1 value with 

LAI it was realised that there was a distinct differences for LAI values below than 

and above an LAI of approximately 1.8. Grad1 has therefore been assumed to 

vary linearly with LAI when greater than 1.8, while an ‘S’ curve relationship using 

the hyperbolic tangent function was appropriate for LAI values less than 1.8.  

These relationships are written as:  

for LAI > 1.8   

 

Grad1 = 0.1124 * LAI + 0.4481 ................................................... 4.37 

 

and for for LAI < 1.8 

 

Grad1 = 0.65 * [Tanh {1.2*(LAI-1.8)} + 1.0] ................................ 4.38 
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Using monthly data for the selected basin and the algorithms of the Pitman 

(Pitman, 1973) model, the PI parameter was adjusted to generate equivalent 

monthly interception losses to those determined by the VTI model. The values of 

monthly interception loss were plotted against MAP for different values of PI as 

shown in Figure 4.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 The relationship between MAP and Pitman interception loss 

(equivalent to VTI interception loss) at different values of 

parameter PI. 

 

For the different values of PI, the following relationship between MAP and 

interception loss was established:  

  

Interception loss = Grad2 * MAP .................................................. 4.39 

 

where Grad2 is the gradient. PI values that generate the same interception loss 

values used in the equation 4.39 were used to establish a relationship between PI 

and Grad2 (Figure 4.12): 

 

 PI = 133.38 * Grad2 ................................................................... 4.40 
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Figure 4.12 The relationship between parameter PI and gradient of the 

relationship between MAP and monthly interception loss 

using the Pitman model algorithms. 

 

Thus based on monthly data and the Pitman model algorithms, the estimation 

equation for the parameter PI was determined as follows: 

 

     PI = 133.38 * Interception loss / MAP ........................................... 4.41 

 

where monthly interception loss is estimated using equations 4.36 to 4.38. 

 

This procedure is repeated four times to account for the seasonal estimations (i.e. 

summer and winter) for each of the two dominant vegetation types (i.e. 

vegetation 1 and vegetation 2) in a basin resulting in estimates for PI1s, PI1w, 

PI2s and PI2w. 

 

4.2.5.2 Estimating uncertain PI1 and PI2 

 

The incorporation of uncertainty into the estimation procedures for the 

interception parameters is based on the variability in the estimates of the 

proportion of the basin under a given vegetation cover class (a primary input) to 

estimate the uncertainty in the determination of LAI. The distribution of the 

interception parameter PI is therefore given as: 
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 N[µPI, σPI] = {133.28 * N[µL, σL]} /MAP ..................................... 4.42 

 

where L is the monthly interception loss whose distribution is determined from: 

 

 N[µIL, σIL] = N[µGrad1, σGrad1] * (MAP * NRD)0.54 ...................... 4.43 

 

and the uncertainty in the estimation of the gradient of the VTI interception loss 

is given by: 

for LAI > 1.8 

 

 N[µGrad1, σGrad1] = 0.1124 * N[µLAI, σLAI] + 0.4481 ................. 4.44 

 

and for LAI < 1.8  

 

N[µGrad1, σGrad1] = 0.65 * [Tanh{1.2*( N[µLAI, σLAI]  – 1.8)} + 1.0 ..  

                                                                                  ................. 4.45 

 

The primary input of the proportion of the basin under a particular vegetation 

cover class is estimated from a number of possible vegetation types. Default 

estimates for the proportions of the vegetation type classes are provided in the 

parameter estimation software for a series of typical vegetation regimes found in 

the region (Figure 4.13 and Table 4.9). The variability in the proportion of basin 

covered by any given vegetation cover class is specified as a range from the 

minimum to the maximum. The seasonal variation is accounted for through the 

specification of basin proportion ranges for both winter and summer seasons. The 

default values that have been built into the estimation equations can be changed 

should there exist better knowledge about variations of vegetation cover in a 

basin. It should also be noted that the secondary vegetation in Figure 4.13 was 

assumed to be a land use change to afforestation which is the typical situation in 

South African catchments. It was deemed to include this since this is a typical 

water resource problem in the country. 
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Figure 4.13  The vegetation classes typically found in the region that are 

used for the estimation of vegetation interception 

parameters. 

 

For each vegetation cover class i, a normal distribution function of proportions of 

basin area under a given vegetation cover class (vci), defined by µvci and σvci, is 

determined from the primary input data as follows: 

 µvci = (Hi + Li) / 2 ..................................................................... 4.46  

and 

 σvci = abs (Hi - Li) / 3.3 .............................................................. 4.47 

 

where Hi and Li are the high and low estimates of proportion of the basin under 

vegetation cover class i. The assumption made for the determination of the 

standard deviation is that the low and high cover estimates encompass 99% of all 

the values of a cumulative normal distribution of basin proportions under 

vegetation cover classes. This assumption implies that these extreme values 

represent 3.3 standard deviations from the mean value.  Absolute values are 

used in the standard deviation estimate (equation 4.47) to avoid negative values 

that will arise in situations where a ‘high’ estimate is smaller than the ‘low’ one.  
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Table 4.9 Example of the default values of vegetation cover ranges 

used to estimate LAI and other vegetation parameters. Est 

refers to estimate. 

 

Vegetation type Summer Winter 

 Low Est High Est Low Est High Est 

Dense indigenous forest 

Dense Forest 0.80 0.90 0.80 0.90 

Bush/Sparse forest 0.20 0.10 0.20 0.10 

Dense crop/groundcover 0.00 0.00 0.00 0.00 

Sparse crop/groundcover 0.00 0.00 0.00 0.00 

Bare soil 0.00 0.00 0.00 0.00 

Mixed indigenous forest and grazing land 

Dense Forest 0.40 0.50 0.40 0.50 

Bush/Sparse forest 0.10 0.20 0.10 0.20 

Dense crop/groundcover 0.50 0.30 0.50 0.30 

Sparse crop/groundcover 0.00 0.00 0.00 0.00 

Bare soil 0.00 0.00 0.00 0.00 

Dense bush and grassland 

Dense Forest 0.00 0.00 0.00 0.00 

Bush/Sparse forest 0.60 0.70 0.60 0.70 

Dense crop/groundcover 0.30 0.30 0.30 0.30 

Sparse crop/groundcover 0.10 0.00 0.10 0.00 

Bare soil 0.00 0.00 0.00 0.00 

Mixed grassland and cultivation 

Dense Forest 0.00 0.00 0.00 0.00 

Bush/Sparse forest 0.00 0.00 0.00 0.00 

Dense crop/groundcover 0.50 0.60 0.50 0.60 

Sparse crop/groundcover 0.30 0.30 0.30 0.30 

Bare soil 0.20 0.10 0.20 0.10 

Arid bush, groundcover & bare soil 

Dense Forest 0.00 0.00 0.00 0.00 

Bush/Sparse forest 0.10 0.10 0.10 0.10 

Dense crop/groundcover 0.15 0.20 0.15 0.20 

Sparse crop/groundcover 0.55 0.60 0.55 0.60 

Bare soil 0.20 0.10 0.20 0.10 

 

5000 Monte Carlo samples are generated from the distributions of each 

vegetation cover class i. Each sample is summed across the different vegetation 

cover classes and the result is multiplied by LAIi, the value of the leaf area index 
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associated with that vegetation cover class i resulting in 5000 samples of LAI for 

the basin dominant vegetation type. From these samples the basin mean, 

standard deviation, skewness and distribution type for LAI are calculated. The 

process is repeated 4 times for the determination of the summer and winter LAI 

distributions for each of the two vegetation types in the basin. 

 

4.2.6 Estimating the groundwater recharge parameter GW 

 

4.2.6.1 Introduction 

 

It has been assumed that the maximum recharge rate (GW mm month-1) from 

the moisture store is influenced by the same factors affecting FT, including soil 

texture and structure. However, while topography will play a major role in the 

determination of FT (slope gradients in areas with low topography will be 

insufficient to generate much lateral drainage), it will play a lesser role in the 

vertical recharge process. The information typically available to define the vertical 

structure of the unsaturated zone and its relationship with surface topography is 

rarely detailed.  

 

The Pitman model uses the following algorithm to calculate monthly estimates of 

groundwater recharge depth (Qrech mm): 

 

 Qrech = GW * [(S – SL)/(ST – SL)]GPOW ........................................... 4.48 

 

where S, ST and SL are the current basin mean moisture content (mm), the 

moisture content at basin saturation (mm) and the lower limit of soil moisture 

(mm) below which no recharge is possible respectively. SL is normally set to zero 

without compromising the results since rates of recharge at low soil moisture are 

small and have little influence on the total water balance of the basin (Hughes 

and Parsons, 2005). In the estimation process the GRAII values of mean annual 

recharge (MAQrech) are used with a simple moisture balance approach. A number 

of sub-basins (15) for which calibrated parameter values were available were 

used to determine a relationship between the appropriate value of S to use in 

equation 4.24 to generate mean monthly recharge (MMQrech = MAQrech/12).  

 

 S = 0.26 * {P–ET-(FT/POW)–MMQrech}/ST + 0.54 ........................... 4.49 

 

where P and ET are mean monthly rainfall and potential evaporation, both in mm. 
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The mean values of parameters ST, FT and POW are used and it has been 

assumed that SL is always 0, while GPOW has been set to a constant value of 3. 

It was found to be difficult to determine values for the two constants in equation 

4.25 (0.26 and 0.54) that could be considered appropriate to sub-basins drawn 

from different physical and climate settings. However, attempts to include 

additional variables within equation 4.25 did not improve the situation and it is 

acknowledged that the estimation equation for GW is less than satisfactory and 

needs to be improved at a later stage.  

  

4.2.6.2 Estimating uncertain GW 

 

To estimate uncertainty related to the estimation of GW implies the specification 

of a PDF for the parameter which is based on the uncertainty in the estimation of 

the mean basin moisture content, S. The uncertainty in the estimation of S will 

then be influenced by the distributions of ST and FT (POW is taken with no 

uncertainty) and is expressed as:  

 

N[µS, σS] = 0.26 * {P–ET–(N[µFT,σFT]/POW)  

– N[µMMQrech,σMMQrech]}/N[µST,σST] + 0.54  ............ 4.50 

 

The determination of the distributions of ST and FT were discussed in earlier 

sections and will not be repeated here.  

 

Determining the mean and standard deviation of QRech 

Two values of mean annual groundwater recharge estimates, taken from the 

GRAII national database, representing the upper (U) and lower (L) limits of mean 

annual recharge are used to estimate the distribution properties (assuming a 

Normal distribution) of mean monthly recharge:  

 

 µMMQrech =  (U + L) / 24 ............................................................ 4.51 

and σMMQrech  = (U – L) / (12 * 2.33) ................................................ 4.52 

 

The calculation of σMMQrech is based on the assumption that the limits, U and L, 

represent the 1st and 99th percentiles (i.e. 2.33 standard deviations about the 

mean) of the cumulative Normal distribution function of MMQrech. 

 

1250 samples are generated from each of the distributions of ST, FT and MMQrech 

and are used to estimate different soil moisture states, S which are used in 
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equation 4.24 to generate the samples of GW and therefore the distribution 

characteristics of this parameter.  

 

4.3 Summary Remarks 

 

This work has focussed on the estimation of the uncertainty for the parameters 

described in this chapter. It is conceded that there will be uncertainties related to 

the other parameters not considered here. The work on parameter uncertainty 

will proceed beyond the time limits of this PhD project and the work reported here 

is used as a preliminary assessment of the methods that are applicable given the 

type of information available in the country. Where it is necessary to include 

uncertainty in other parameters, it is recommended that a uniform distribution is 

used and the maximum and minimum values are set to feasible ranges of the 

parameter values.  

 

Of the parameters that were not dealt with in this study, R (with values between 

0 and 1), which describes the relationship between soil moisture and evaporation, 

is likely to have a significant influence on the runoff generation processes. It is 

envisaged that its estimation with uncertainty is likely to increase overall 

uncertainty propagated through the model. The estimation of this parameter 

would require information on vegetation characteristics related especially to 

rooting depth and density and it was found to be difficult to access useful 

information of this type for the region. In the current study, uncertainty in 

parameter R is estimated using a uniform distribution based on our understanding 

of the conceptual physical meaning of the parameter (Kapangaziwiri, 2008). R is 

expected to be higher (i.e. closer to 1) in more arid and less densely vegetated 

areas and lower in more humid and well vegetated areas. In this study therefore, 

the minimum and maximum values are set arbitrarily between 0 and 0.3 for wet 

basins, 0.3 and 0.7 for sub-humid/semi-arid basins and 0.7 and 1 for arid basins.  

 

While the incorporation of uncertainties in the parameter estimation process is 

important for water resources estimation, it is recognized that the application of 

the methods discussed in this section are subject to several sources of 

inconsistency. The methods suggested for estimating uncertainty are designed to 

account for the differences in scale between the basin property data and the 

model. However, there remains a degree of subjectivity in the interpretation of 

the physical data. This is particularly relevant to regions where there is a large 

degree of variability in the AGIS (2007) land type data within a single model sub-
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basin. In these situations, the process of selecting the relevant values for the 

parameter estimation process becomes quite complex. In other parts of the 

southern African region, where the same type of basin property data do not exist, 

the available data would require different interpretation approaches. This will 

inevitably introduce further subjectivity. The estimation equations themselves, 

while considered to be conceptually credible, are generalizations of known 

hydrological principles. They are therefore subject to essentially unknown 

structural uncertainties. However, in spite of these potential sources of 

subjectivity, the method is expected to generate more consistent parameter sets 

than those based on calibration and regionalization. The basis for the different 

number of Monte Carlo samples used (1000, 1250, 1500, 2000 and 5000 were 

used) has mostly been pragmatic depending on the calculations, with a smaller 

number being used to reduce computing time where the estimation process is 

iterative.  Different percentiles were also used for the normal distribution as well 

as different default values of the standard deviation in proportion to the mean. 

This was based on how extreme the sample values are considered to be. 

 

A relevant overall conclusion at this point is that while the parameter estimation 

process has been significantly improved, there is still some work required in some 

areas. The most significant area relates to the interpretation of the AGIS (2007) 

land type information, especially the soil depth and texture data. This problem is 

closely related to the issue of scale. There will always be subjective interpretation 

of the land type information in cases when a number of land types (and therefore 

soil types) occur in the same sub-basin. The ensuing process of lumping is 

expected to affect the parameter estimation process and therefore the model 

outputs. One of the main questions that arise is therefore whether a reduction in 

the scale of modelling, and therefore a reduction in the scale of parameter 

estimation, is likely to be rewarded with improved results. This improvement 

might be evaluated by better correspondence with observed data in gauged 

basins and a reduction in uncertainty in ungauged basins. 

 

It is important to recognize that the a priori parameter estimation process is only 

one part of the overall uncertainty framework (discussed in Chapter 3 and 

illustrated in Figure 3.3). In the context of this framework, the output uncertainty 

resulting from the a priori parameters is further assessed using the regional 

constraints (Chapter 5). This is the importance of the feedback loop proposed in 

the application framework (Figure 3.3).  
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CHAPTER 5 

DEVELOPMENT OF CONSTRAINTS 

 

5.1 Introduction 

 

It was established in Chapters 2 and 3 that making predictions in ungauged 

basins necessitates a change in the mindset of hydrological model applications. 

The traditional approach that relies on calibration does not work in many basins 

of the world and especially in southern Africa where the density of runoff 

measurement networks are low. This means that the classical methods of 

regionalization are of little use. The unfortunate problem has been that while 

there has been phenomenal growth in the sophistication of hydrological models 

over the past few decades (mainly due to technological improvements in 

computing power) little has been done about collecting additional data. While 

there are remote sensing data collection platforms, these have not been used 

much and confidence in their use will grow with longer periods of overlap with 

historic ground-based observations that should be used to ‘calibrate’ these data 

(so called ground-truthing). Therefore, the role of observed data is critical 

(Silberstein, 2006) and cannot be over-emphasized. It is argued that modelling in 

the absence of adequate data is not science, unless it is to develop hypotheses 

that are to be tested by observation and that improvement in the management of 

our environment and water resources will not come with improved models in the 

absence of improved data collection because we cannot manage what we do not 

measure. Seibert and MacDonnell (2002) advocate the use of ‘soft data’ to 

condition model process representation and, consequently, improve predictions. 

The use of hydrological response characteristics, while not strictly soft data, is 

gaining importance in conditioning and constraining hydrological models 

especially in ungauged basins. 

 

One of the PUB approaches has been to explore the use of physical basin 

characteristics to either estimate parameter variation across different places (a 

priori parameter estimation) or to explain hydrologic behaviour of catchments. 

Both of these initiatives are explored in this study within an uncertainty 

framework, with the former discussed in chapter 4. The latter forms the basis of 

this chapter. The physical characteristics are used to aid the identification of 

consistent and hydrologically plausible models in a manner that is akin to the 

calibration process. This is achieved through the use of basin characteristics 
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related to hydrological signatures. The underlying principle is that physical basin 

characteristics (through hydrological signatures) can be used as surrogates, or 

are large scale markers of intrinsic local scale hydrological processes. While this is 

nothing new and has long been recognized and implicitly accepted, explicit 

quantification of these relationships is relatively new and is still an open problem. 

Thus, when dealing with ungauged basins, it is more prudent and scientifically 

sound to look for hydrological signatures (usually defined by basin physical or 

climatic characteristics) of the processes being simulated instead of insisting on 

just modelling exercises and model testing. In fact, looking for hydrological 

signatures, and basing our hydrological predictions on these, may open new 

avenues of research that are capable of providing answers to problems about 

uncertainty in hydrological predictions. Thus, if relationships between basin 

characteristics and hydrological signatures can be defined, this would make 

regionalization of models and model application in ungauged basins more 

consistent and objective. And, if statistical confidence and/or prediction 

boundaries around these relationships can be included then the uncertainty 

related to model predictions can also be quantified and analysed (Figure 5.1). 

While this is a nontrivial issue, it is a hydrologically plausible and scientifically 

sound alternative to calibration and regionalization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 The uncertainty related to hydrological signatures based on 

relationships with basin characteristics  
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In the context of the framework discussed in Chapter 3, a hydrological signature 

is defined as an index of the time series of a basin’s dynamic response 

characteristics (e.g. runoff coefficient) and reflects the basin’s functional 

behaviour (Wagener et al., 2007, Yadav et al., 2007). Such indices of catchment 

behaviour are capable of being regionalised using simple regression relationships 

whose prediction limits are used to define the distribution of possible ‘behaviour’. 

Indices are often used as model diagnostic tools to constrain and condition 

continuous flow simulations at both gauged and ungauged sites. Signatures are 

pattern extracts of the input-state-output behaviour of a real system 

(representing the functional characteristics of the system) while the indices that 

are derived from the signatures are pattern properties of the same system (Gupta 

et al., 2008). Applied properly (i.e. with all the uncertainties reduced 

considerably) they are better than calibration whose focus is on the goodness of 

fit between observations and simulations (Vogel and Sankarasubramanian, 2003). 

They can therefore be important in separating the consistent (i.e. behavioural) 

model outputs from those that are not. Indices are often loosely referred to as 

just constraints, because they can be used to constraint all possible model output 

results.  

 

Constraints are derived from output or input-output time series measured within 

the basin, including precipitation, evapotranspiration, streamflow or any other 

response variables (Yadav et al., 2007). Such response characteristics are often 

indicative of how a given basin differs from others and examples include common 

descriptors of hydrograph shape such as runoff ratio, slope of the recession curve 

and time to peak flow (Shamir et al., 2005). The major advantage with 

constraints is that they are hydrological fingerprints of catchment behaviour and 

are thus model independent. The approach adopted in this study provides for the 

generation of ensemble predictions in ungauged basins and the use of 

regionalized basin functional characteristics (or indices) to constrain ensembles of 

model predictions. The objective is to achieve a progressive reduction in 

predictive uncertainty by constraining model output to expected watershed 

behavior at both gauged and ungauged locations, while maintaining reliable 

and/or consistent predictions (Yadav et al., 2007). 

 

5.2 Development of constraints for South Africa 

 

In the context of the framework, regional constraints are regional priors on the 

expected catchment hydrologic responses. In ungauged basins, these are 
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equivalent to historical observed information in traditional model calibration. The 

basic assessment of hydrological model simulations has been achieved through 

the hydrograph and in gauged basins the simulated flows are compared with the 

observed flows. It is contended here that if the use of constraints is to be 

successful then the choice of constraints for use in any region should encompass 

as many aspects of the hydrograph as possible. This ensures an all round 

assessment of the hydrological system under investigation. The other important 

considerations when selecting constraints are:  

 

Data availability and quality: For reliability and consistency the construction of 

constraints must be based on reliable information about observed natural 

hydrological system response. This implies that many of the available historical 

observed streamflow records are not suitable for this purpose. Besides the effects 

of abstractions, impoundments, diversions and land use changes, these records 

are also subject to measurement error and flow levels beyond the instrument 

limits are often estimated based on extrapolation equations. The applicability of 

these equations beyond the measurement limits is a contentious issue. During 

critical flood conditions extrapolation equations are highly uncertain and resultant 

high flow records need to be used with caution. Some pre-processing, to 

naturalize the flows (i.e. remove non-natural effects) may be necessary; 

however, these approaches are unfortunately subject to uncertainty. This 

compromises the quality (accuracy and representativeness) and usefulness of the 

constraints based on these data. 

 

Hydrologic relevance: constraint indices must be hydrologically relevant and 

measure some property of the hydrological response characteristics. 

 

Capable of extraction from the simulated flows: If a constraint index cannot be 

estimated from the model output so that it can be compared against its 

equivalent based on observed information, then it ceases to be useful. The whole 

purpose of using constraint indices is to be able to guide model applications by 

restricting the simulated responses to within the range of likely or behavioural 

(Beven and Binley, 1992) responses determined from the observed data.  

 

Suitable predictors: Constraints are a representation of a basin’s functional 

characteristics and their construction is dependent on the availability of suitable 

basin physical and/or climatic information. These are known as predictor variables 

and must be available at suitable scales (spatial and temporal) and with minimum 
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uncertainty. As discussed in Chapter 2 uncertainty ranges are often defined by a 

95% confidence interval when sufficient information about the distribution is at 

hand. The 95% prediction limits of the regression relationships used to estimate 

the regional constraints can be used to define the extent of their uncertainty.  If 

these limits are too wide as a consequence of the choice of unsuitable predictor 

variables, they will fail to effectively condition model outputs. 

 

South Africa has had a long history, since the 1970s, of water resources 

assessments with the 1990 project (WR90, Midgley et al., 1994) being the most 

popular and the 2005 project (WR2005, Bailey, 2009) being the most recent 

update of all the previous assessments. This has created a huge database of 

hydrological data and conventional wisdom on water resources of the country. 

These data, and a reasonable network of river flow observation gauges, are 

invaluable in the quest to develop constraints that would allow the application of 

hydrological modelling in ungauged basins. While the gauge network is 

reasonable, the extent to which the observed data are representative of natural 

hydrology conditions is dubious given unquantified upstream human influences. A 

number of possible constraint indices and their predictor variables were thus 

investigated before three relatively simple ones were chosen for development and 

testing. Therefore, while other indices are still being considered, as the project 

develops further, only three are reported in this study. These are the mean 

annual runoff ratio, slope of the monthly flow duration curve and mean annual 

ground water recharge. The choice and subsequent development of these 

constraints is driven by the quest to answer the question relating to how to 

diagnose the hydrology (at a given temporal scale) of any basin based on 

observed surface runoff and relevant climatic and physical data. 

 

5.2.1 Mean annual runoff ratio (Q/P) 

 

This constraint is used to describe the overall water balance of a basin and is an 

indication of how well the model is simulating the water balance of the basin 

given the input information. The development of the constraint is based on the 

concepts of Budyko (1974) using a measure of aridity to predict expected runoff. 

This is achieved using regionalized relationships of Q/P against P/PE, where Q is 

runoff, P rainfall and PE is potential evapotranspiration. 
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Development of the constraint relationships 

In South Africa the series of water resources estimation projects has resulted in 

country-wide estimates of hydrological information. The country is divided into 

1946 so called ‘quaternary catchments’ for which simulated (and in some cases 

observed) data on hydrological variables are available. The current database, so 

called WR2005 (Bailey, 2009) which used data up to the 2004/2005 hydrological 

year, had not been released at the time of the development of these 

relationships. The relationships are therefore based on the WR90 data (Midgley et 

al., 1994), that is based on data from 1920/1921 up to 1989/1990 hydrological 

years. The first step was intended to cover the whole country and therefore used 

the simulated mean annual runoff (Q) from the 70 year (1920 to 1990) WR90 

runoff time series and the estimated mean annual rainfall (P) and potential 

evaporation (PE) for all 1946 quaternary catchments (Midgley et al., 1994). The 

runoff data used were the incremental flows, which are flows generated only 

within each quaternary catchment. The objective of initially using the simulated 

flows was to achieve total coverage of the country and to try and identify 

different regions of similar response relationships. A scatter plot of all these data 

suggested a series of log-log relationships that converge at low values of both 

P/PE and Q/P. An iterative process was followed to define five regional 

relationships. The relationship for the first region, Region 1, was first established 

by identifying a regression equation that had a high R2 value and for which the 

residuals were approximately equally divided between negative and positive 

values. Once the points to be included in Region 1 were finalised, the same 

process was followed to identify the Region 2 points and so on. All of the points 

and the resulting regression relationships are shown in Figure 5.2, while Table 5.1 

lists the equations and the relevant R2 values. Note that in Figure 5.2 (and also 

Figure 5.3) Q/P values above 1 would be results of data errors in either Q or P 

estimates, e.g. significant over-estimation of flow or significant under-estimations 

of rainfall. Figure 5.4 indicates that the regions are generally spatially contiguous 

although there are some areas that are not clearly defined as a single region. This 

may be due to localised variations in runoff response, as well as artefacts related 

to errors in the data and the use of simulated data. 

 

In spite of the reasonably good results resulting from this process, it would not be 

strictly good scientific practice to develop the regional constraint relationships 

based on simulated data, although it is considered to be acceptable to use these 

data to initially define the regions.  However, these are the only data that have a 

reasonable national coverage and were therefore deemed a good starting point 
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for a first order definition of regions before these regions can be refined using the 

more spatially limited naturalised observed flow data for a final definition of the 

relationships. Therefore, the second step involved the use of the naturalised 

observed time series (also given in Midgley et al., 1994) for all available stream 

flow gauges. These data required some filtering and quality checks before they 

could be used. Gauges were initially rejected if they had less than 10 years of 

observations, if their drainage areas included quaternary catchments that fell into 

more than a single region or if the amount of missing (and in-filled) data was 

excessive. Some very small gauged sub-basins were also rejected as they were 

not expected to be representative of quaternary catchment scale responses. This 

process reduced the number of gauges to 270 within the whole country. The 

spatial coverage of these gauges was such that some regions are better 

represented than others which could impact on the relationships (Table 5.1). 

However, given that the initial regions were based on all quaternary catchments 

the reasoning was that the effects should not be too severe. If the relationships 

for the gauged basins were not too different from the ones based on simulated 

data, then it was hypothesised that the spatial distribution of the gauges is not a 

critical consideration. For each of the regions identified during the first step, Table 

5.1 lists the number of gauges included in the analysis, the range of catchment 

areas, the coefficients of the final estimation equations and the R2 value, while 

Figure 5.3 shows the relationships graphically. It is apparent that the final 

equations are very similar to the initial equations based on simulated data (Figure 

5.2) for regions 1 to 3, but that there are quite large differences for regions 4 and 

5. A possible explanation is that there are less streamflow gauges used for these 

two regions, that the initial equations are inappropriate or that there are 

problems with some of the naturalised flows in these regions. It is also possible 

that some of the quaternary catchments that have been included in these regions 

based on simulated flows should really be in other regions. The scatter of the 

points that made up the last two regions was quite large and it would have been 

possible to include an additional region or two. However, this would have meant 

additional regions based on very few data points which would not have been 

desirable and also it was the intention of the study to keep the number of regions 

to a minimum. Another pertinent observation is that some of the region 5 

catchments are in Lesotho where rainfall is very difficult to estimate. In general, 

the estimated values of P and PE used in this study are also subject to errors. 

With P, it is possible that, as is usually the case, the mountainous areas would be 

poorly gauged and the estimates are not good. The transition from using 

simulated to naturalised observed data would result in a shift of the points in the 
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scatter plot. It is thus highly probable that some of the problems could be related 

to errors in the estimation of these values. The effect may not show up when 

using simulated data as the simulations are driven by the same P and PE data. 

However, errors in P and PE estimates could be revealed when using naturalised 

observed data. The final regions of the runoff ratio constraint illustrated in Figure 

5.4 are generally consistent with expectations of the functional behaviour of 

catchments in the country based on rainfall and evapotranspiration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Regional Budyko type curves based on log-log relationships 

using simulated flow data (see Table 5.1 for coefficients of 

the regression equations). 
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Figure 5.3 Regional Budyko type relationships based on naturalised 

observed flow data (see Table 5.1 for coefficients of the 

regression equations). 

 

Table 5.1 Coefficients of the regional Budyko type relationships shown in 

Figure 5.2 and Figure 5.3 

 

Regions  

1 2 3 4 5 

Based on simulated data 

No. of basins 397 702 317 202 325 

Area (km2) range 59 – 8647 43 - 18108 72 - 10274 72 - 3913 89 - 8037 

Slope (A) 2.527 2.293 2.168 2.126 1.770 

Intercept (B) -1.113 -0.687 -0.304 0.194 0.478 

R2 0.927 0.968 0.984 0.990 0.866 

Based on naturalised observed flow data 

No. of gauges 40 135 45 23 27 

Area (km2) range 86 - 1887 81- 1668 106-1691 84- 873 101-1889 

Slope (A) 2.322 2.154 2.171 2.406 1.351 

Intercept (B) -1.079 -0.741 -0.338 0.475 0.173 

R2 0.932 0.905 0.890 0.917 0.820 

Note: Equations are of the form ln(Q/P) = A * ln(P/PE) + B 
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Figure 5.4 Regions based on Budyko type relationships between P/PE 

and Q/P 

 

5.2.2 Slope of the annual flow duration curve (FDC) for monthly 

stream flow volumes 

 

The gradient of the flow duration curve (FDC) is a measure of the variability of 

flows. In a region such as South Africa with very diverse flow regime 

characteristics, it can be a very useful indicator of hydrological response 

characteristics. The slope of FDCs is also important in determining potential levels 

of sustainable abstraction, the need for artificial storage and is relevant to 

determining environmental flow requirements (Hughes and Hannart, 2003). FDC 

slope is therefore highly relevant to water resources management.  

 

Development of the constraint relationship 

As with the Budyko relationships the starting point for the analysis was to use the 

simulated flow time series for all 1946 quaternary catchments to try and identify 

regional relationships. For largely perennial river systems the FDC slope values 

were calculated as; 
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 FDC Slope = (lnQ90 – lnQ10)/80 ...................................................... 5.1 

 

where Q10 and Q90 are the 10th and the 90th percentiles of the cumulative 

frequency distribution of flows. For those sub-basins with periods of zero flow, the 

Q90 value was replaced with the first non-zero FDC percentage point value and 

the difference in flows divided by the appropriate % difference.  

 

Various readily available predictor variables (or combinations thereof) expected to 

influence FDC shapes were used to try and find suitable estimation equations, 

either for the whole country or for different regions.  It was found to be very 

difficult to find suitable variables and there were no obvious regional patterns in 

the data. It has therefore not been easy to regionalize this constraint and it is 

currently being used on a national scale, while further analyses are still being 

done to improve the development of a constraint relationship. Figure 5.5 

illustrates an interim solution. The estimation equation is based on an index that 

combines a measure of aridity (P/PE) and a measure of sub-basin slope (relative 

relief). The equation used is given by; 

  

ln(FDC slope) = 4.0 – 0.6 * Index value .......................................... 5.2 

where  

Index value = ln(100*P/PE) + 0.063 * ln(relief) ............................... 5.3 

 

and relief is relative relief estimated from the highest and lowest points in a 

quaternary catchment using the 90m gridded digital elevation data 

(http://csi.cgiar.org). The R2 value of the relationship is 0.63 which implies quite 

wide prediction limits (Figure 5.5). The scaling factor of 0.063 for Ln(relief) was 

determined by trial and error to achieve the highest possible value of R2.The 

analysis excluded a number of sub-basins in the country that are strongly 

influenced by dolomitic geology and a region in the north-east of South Africa 

that appears to be anomalous based on the simulated flow data. The latter group 

gives values of slope that are difficult to understand based on experience and it 

was deemed prudent to exclude them to avoid unnecessary and unexplainable 

noise. Some of the scatter in the relationship as well as the existence of 

anomalies could be artefacts associated with the use of simulated data.  
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Figure 5.5 Relationships between an index of aridity (P/PE) and sub-

basin slope (Relief) and the slope of flow duration curves 

based on simulated WR90 data (the dashed lines are 90% 

prediction limits around the regression equation).  

 

The regression analysis was repeated with 230 naturalised observed flow records 

(taken from WR90, Midgley et al., 1994) and the appropriate format of the index 

value was found to be closely similar to the one used for the quaternary 

catchment data (i.e. a scaling factor of between 0.06 and 0.08 for the log value of 

relative relief).  The range of index values is substantially less for the observed 

data (reaching a minimum index value of only 2.5), the R2 value is much lower 

(0.275) but the regression equation is very similar (ln(FDC slope) = 3.64 – 0.53 * 

Index value). The inclusion of relative relief in the analysis of the observed data 

does not add very much to the precision of the relationship and further work is 

required to assess other predictor variables that might influence the variability in 

slope of FDCs. During the analysis of the naturalised observed data no obvious 

anomalies were apparent which provides some justification for excluding the two 

groups of catchments (dolomitic areas and some in the North East region) when 

using simulated data. The problems encountered are possibly artefacts of 

modelling. This constraint is therefore used here in this form (i.e. on a national 

scale and not regionalised) as part of this study is to assess the merits of the 

constraint approach to model application especially in ungauged basins. 



 126

5.2.3 Groundwater recharge 

 

During the revision of the initial parameter estimation procedures (Kapangaziwiri 

and Hughes, 2008), an attempt was made to estimate the main groundwater 

recharge parameters (GW and GPOW) using estimates of the mean annual 

recharge (from the GRAII database) and an indication of average soil moisture 

status based on some of the other parameter estimates. While an estimation 

approach has been adopted (see Chapter 4, section 4.2.6), initial tests indicated 

that it can produce dubious and unreliable results and therefore cannot be used 

with a great deal of confidence. In practice there are too many variables and non-

linearities involved in the monthly simulation of recharge within the model to be 

able to reverse-engineer the model output (i.e. estimate the input parameters 

required to achieve a defined result in terms of an assumed mean annual 

recharge). The alternative of using both surface and sub-surface physical 

catchment properties has yet to be attempted and the results of such an 

extensive (and more complex) approach cannot be guaranteed to be better than 

the current approach. Besides, the information on the expected predictor 

variables is unlikely to be easily available and accessible within the region 

(Kapangaziwiri, 2008). 

 

Given the relatively low degree of confidence in the recharge parameter estimates 

it was considered necessary to constrain the ensembles using the GRAII 

estimates of recharge. It is prudent at this point to highlight the fact that this 

groundwater constraint is meant to condition one of the internal state variables 

(related to the representation of the recharge process) of the model and not the 

final runoff time series that is generated. One of the multiple outputs of the 

model is a time series of monthly recharge. However, as Figure 5.6 indicates, this 

is also a highly uncertain process, particularly in those areas where recharge is 

expected to be high. Figure 5.6 illustrates the ranges of the three different 

recharge estimates given in the GRAII for all 1946 quaternary catchments. In 

many cases this range can be in excess of 50mm which would translate into a 

very wide range of expected groundwater contributions to stream flow. It is worth 

noting that the largest range is between the middle estimates and the higher 

estimates, particularly at high recharge rates.  
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Figure 5.6 Range of mean annual recharge estimates (mm y-1) 

extracted from the GRAII database for all 1946 quaternary 

catchments (the results are ranked using the lowest 

estimate). The grey shaded area represents the difference 

between the lowest and middle recharge estimates, while 

the black area represents the difference between the middle 

and highest recharge estimates. 

 

5.3 Other potential constraints 

 

A number of other potential constraints based on flow characteristics can be 

investigated and developed in the same manner as described in the preceding 

sections. These constraints were not used in this study and are intended to be 

explored in further developments of this work. One of the things that is important 

to note is that some constraints are model dependent with some more suited to 

models applied at smaller temporal and spatial scales. It is also important to take 

cognisance of the quantity and quality of available data on the many different 

requisite predictor variables (Kennard et al., 2009) for the development of the 

relationships. Then, there is the need to investigate whether these constraints 

can be regionalised and whether uncertainty could be added to them so that they 

can be used to effectively constrain regional model application. Possible 

constraints include: 

� Seasonality and year-to-year variability of stream flow: Stream flow 

seasonality varies quite substantially in a country like South Africa and 

indeed in the southern African region and can potentially be used as a 
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constraint. This variation is a direct result of the timing of peak rainfall and 

evapotranspiration. Lags between peaks of rainfall and stream flow are 

naturally expected to vary from shorter delays in the steeper topography 

of mountainous regions to longer delays in the lower lying, gently sloping 

areas. Stream flow is most variable from year to year in the arid and semi-

arid areas, while wetter regions have less variable regimes. Such an 

understanding should assist in conditioning model application across 

different climatic conditions. Capturing such variability into an index which 

could be regionalised would result in an additional flow metric to assess 

predictions in ungauged basins. Related to seasonality of flows is the 

variability of either monthly or annual flows which could also be explored.  

� Number of months of zero flow (or percentage time of zero flows): 

Also used to describe the flow regime of a given basin is the number of 

months of zero flow or the percentage time of zero flows. This defines the 

permanency of flow, with drier areas having a larger proportion of zero 

flows than wetter regions. In some cases where higher flows need to be 

investigated, regionalisation can be done on the basis of an index based on 

an average or total duration of pulses above a selected threshold flow or 

flood/drought frequency (Poff et al., 1997). 

� Coefficient of variation of monthly or annual flows: This is also used 

to characterise variability of monthly or annual flows and depends to a 

large extent on the hydro-climatic conditions of a basin. 

� Recession coefficients and time-to-peak of the daily hydrograph: 

this is an important criterion for daily or shorter time scale models. 

Different basins have varied response characteristics to rainfall inputs with 

shape, area, soil hydraulic properties and slope of a basin being important 

predictor variables. Such constraints can help determine the flashiness of 

basins (DeMaria et al., 2007). 

 

5.4 Summary 

 

The objective of finding suitable constraints is to provide a basis for checking 

which of the many different parameter sets used to generate the ensembles 

produce behavioural results and therefore reducing the uncertainty in model 

simulations. However, as pointed out earlier, it should be acknowledged that all of 

the constraint relationships are also subject to uncertainty. This uncertainty is 

related to: 
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� The accuracy of the data used to calculate the dependent variables of 

the constraint relationships (i.e. indices of hydrological behaviour). In 

the case of South Africa this involves the use of stream flow data that 

contain measurement errors and a wide variety of effects of upstream 

water resources developments and land use impacts. The data being 

used in this study are therefore the corrected and naturalised data. The 

impact of this naturalisation process has not been assessed. Questions 

can still be raised as to this impact. Could this have been done 

differently? It is possible that that may lead to different regional 

equations/relationships or some basins may transfer to different 

regions. Unfortunately, the assumptions that were used for 

naturalisation and correction are not documented and therefore cannot 

be checked. It must be acknowledged that the information available 

during the WR90 (Midgley et al., 1994) study upon which to base a 

naturalisation would have been less than ideal. 

� The data used as independent variables in the constraint relationships 

are subject to either error or generalisation (smoothing) at the 

catchment scale. 

� The choice of independent variables for use in the constraint estimation 

equations is limited to information that is readily accessible and may 

not necessarily be the most appropriate for a specific constraint. 

 

One of the fundamental questions that are very difficult to answer is which of the 

estimation approaches used in this study is subject to the most unknown 

uncertainty. Is it within the methods used to develop the constraint relationships, 

or is it in the methods used to estimate the parameter values?  The whole basis 

of the framework presented in Chapter 3 is that the constraint relationships can 

be used to determine which of the different model parameter sets are used to 

generate the ensembles behavioural. The assumption is therefore that the 

constraint relationships are determined with less uncertainty than the parameter 

sets. Whether this is a realistic assumption remains to be seen. The initial 

intuitive indications would be that high confidence can be expressed in some of 

the constraint relationships (e.g. the volume constraint based on the relatively 

high R2 values – see Table 5.1), while others will remain very uncertain unless 

improved relationships can be developed (e.g. the poor R2 value for the FDC 

slope) or unless better data can be used to develop the constraints (e.g. the very 

wide range of recharge estimates that are currently available). An attempt at 



 130

exploring this issue will be further discussed during the presentation of the 

results.  
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CHAPTER 6  

TOOLS DEVELOPED TO IMPLEMENT THE 

FRAMEWORK 

 

6.1 Introduction 

 

Having discussed the main tenets and components of a framework of model 

application in the region (Chapter 3), the next logical task was to look at 

framework implementation. This chapter, therefore, aims at describing the tools 

that are used for the implementation of the framework. The implementation tools 

are the techniques and/or software developed for use within the framework. They 

are intended to facilitate effective execution of the framework and to increase the 

probability that users will take objective and consistent actions to generate 

consistent and hydrologically plausible results. The tools that have been 

developed include the parameter estimation software, Pitman model modifications 

to allow Monte Carlo simulations and regional sensitivity analysis software. These 

tools were all developed in the Delphi programming language and designed to be 

compatible with existing modelling software used within the Institute for Water 

Research (IWR) at Rhodes University. While the parameter estimation software is 

a new development for the Pitman model, the others are adaptations of popular 

existing methods. The main aim of the framework and the implementation tools is 

to provide efficient, relevant and practical hydrological modelling solutions that 

can benefit water resources management and planning.  

The Pitman model operates within a database and information management 

platform known as SPATSIM (Spatial and Time Series Information Modelling, 

Hughes and Forsyth, 2006). SPATSIM is an integrated hydrology and water 

resource information management and modelling system which makes use of 

ESRI Map Objects and the Delphi programming language to create a data 

management environment with a spatial information front end and a relational 

database structure to provide access to a wide range of different types of 

hydrological and water resource information. The package includes many utilities 

for importing data of all types, viewing, graphically displaying and editing data, 

sharing data with other users and further processing data to create new 

information. It also provides access to a wide range of linked models and data 

analysis procedures that are typically used in water resource assessments 

(rainfall-runoff models, design floods, reservoir water balance models) and 
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ecological water requirement assessments (Hughes and Forsyth, 2006). All data 

are stored in a database and all the software tools currently operating on this 

platform are capable of reading from and writing to the database. The new 

software tools (parameter estimation and regional sensitivity analysis) developed 

to support the implementing of the framework are currently stand-alone 

applications, which can either generate outputs that can be easily imported into 

SPATSIM, or they use data generated by SPATSIM. The outputs of the parameter 

estimation program (i.e. the parameters and the distribution characteristics) are 

used as the input into the Pitman model to simulate output ensembles. These 

ensembles are direct inputs into the regional sensitivity analysis program. Once 

the design of these tools has been finalized, they will be fully incorporated into 

the SPATSIM system. 

6.2 Parameter estimation software 

The process of parameter estimation incorporating uncertainty was fully described 

in Chapter 4 and this section is an overview of the software that facilitates the 

application of the estimation process. The section is essentially provides an 

explanation of the coding or operationalisation of the detail given in Chapter 4. 

The parameters are estimated directly from inputs of physical basin attribute 

data. The uncertain model inputs (in this case, parameters) are defined by 

distributions. These distributions are based on the assumed uncertainty in the 

basin physical and hydro-climatic predictors used to quantify the parameters. The 

software developed for this makes use of the principle of Monte Carlo sampling 

from the assumed distributions of the predictor variables to generate a sample of 

the population of possible values of the estimated variable. From this sample, a 

posterior distribution function of the estimated variable is defined. In the software 

this estimated variable could be a basin scale equivalent of the basin physical 

property or an estimation of a physical derivative necessary for basin scale 

estimations or a parameter. The software that performs these tasks therefore has 

three basic components: 

The primary inputs: these are the raw physical basin data measured at smaller 

than the sub-basin scale which is the modelling scale. These are mainly made up 

of soil texture and type classes, soil depth, terrain unit slopes and geology. Also 

making up part of the primary inputs are basin hydro-climatic data, for example 

monthly rainfall, number of rain days, annual recharge, etc. 
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Calculation of secondary variables: these are sub-basin scale estimates of the 

physical basin attributes data and other derivatives of these data, for example 

porosity, permeability, etc. They are intermediate estimates for the parameter 

estimation procedures. Translation equations are applied to the relevant primary 

inputs to derive these variables (Section 4.2). 

Determination of the model parameters: based on equations developed in 

Chapter 4 and Kapangaziwiri (2008), the primary basin inputs and/or the 

secondary basin variables are used to calculate sub-basin scale values of 

parameters. 

The calculations used for the estimation of the frequency distribution properties of 

secondary basin variables and parameters make use of Monte Carlo sampling to 

generate a sample of predetermined size from which the distribution statistics 

(mean, standard deviation and skewness) are estimated. The distribution 

properties of the necessary secondary inputs are calculated first through sampling 

from the distributions of the primary inputs. These are then used to calculate 

parameters. The results of these calculations are the estimates of parameters of 

the model, some with uncertainty while others are estimated without uncertainty. 

However, some of the parameters that are not part of the estimation process 

have their default values written out at the same time. This is to ensure that the 

full complement of parameters is written out and can easily be imported directly 

into the model without having to first organize the output file. For those 

parameters estimated with uncertainty, the mean value of the parameter, its 

standard deviation, skewness and a distribution type are specified. The final part 

of the output text file is compatible with the parameter input data to the Pitman 

model (see Section 6.3 and Table 6.1). The results are output to a text file which 

can be modified and can be imported back into the program so that changes to 

an existing set of data can be made (i.e. save existing data). 

6.3 Pitman model modifications 

The aim of this section is to describe the modifications made to the SPATSIM version 

of the ground water version of the Pitman model (Hughes and Parsons, 2005) to 

enable it to manage the input probability distributions of the uncertain parameters 

and generate ensembles of simulation outputs using a Monte Carlo sampling 

technique. This process is represented in Figure 6.1.  
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Figure 6.1 Diagrammatic representation of the uncertainty version of the 

Pitman model. 

Each parameter can be input with uncertainty represented by one of three 

distribution types (Normal, log-Normal or Uniform) i.e. uncertainty is expressed 

through a range of possible values instead of a single value. Table 6.1 lists the 

contents of the uncertain parameter inputs to the model and is identical in format 

to the final part of the text file output from the parameter estimation program. 

The six data columns for each model parameter represent: 

 

� The mean value of the parameter which is used to represent the mean of a 

Normal distribution or is the logarithmic value of the mean of a log-Normal 

distribution. It is assumed to represent the ‘best guess’ of the parameter 

value.  

� The standard deviation of the parameter which is used directly if a Normal 

distribution is specified. If a log-Normal distribution is to be used, the 

natural log of this value represents the standard deviation. If this value is 

0 the parameter is assumed to be estimated with no uncertainty (thus 

calculations will use only the mean value) regardless of any other settings.  

 s 
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� The skewness of the distribution which is included for information 

purposes only and is not used in the model. 

� The distribution type, where 0 represents no uncertainty, 1 a Normal 

distribution, 2 a log-Normal distribution and 3 a Uniform distribution. 

� Minimum and maximum values. If either a Normal or a log-Normal 

distribution type is specified, these represent the limits of the sampling 

process and sample values for parameters generated outside these limits 

are rejected in the Monte Carlo process. Currently the values are set 

arbitrarily. However, it is possible to narrow or widen the ranges if detailed 

information is available. If a Uniform distribution is specified, these values 

represent the limits of the distribution and all values between them are 

considered equally probable. 

 

For each run of the model, a parameter set is generated through Monte Carlo 

sampling from within the distributions of the input parameters. The number of 

model runs (and therefore the number of parameter sets and output ensembles) 

is set to 5000 by default but can be specified by the user (Figure 6.2). If a 

Uniform distribution has been specified, a uniform random deviate (RND) between 

0 and 1 is generated (using the random sample generation procedure given in 

Press et al., 1988) which is then scaled using the minimum (PMIN) and maximum 

(PMAX) parameter values to give the value used in the model run (P): 

 

 P = RND * (PMAX – PMIN) + PMIN ....................................................... 6.1 

 

If a Normal or log-Normal distributions has been specified a normally distributed 

deviate (NRND), with a mean of 0 and a standard deviation of 1, is generated 

(using the random sample generation procedure given in Press et al., 1988) 

which is scaled using the mean (PMEAN) and standard deviation (PSD) values for the 

parameter. For a Normal distribution type: 

 

 P = PMEAN + NRND * PSD ................................................................ 6.2 

 

And for a log-Normal distribution type: 

 

 P = e (ln(PMEAN) + NRND*ln(PSD)) .............................................................. 6.3 

 

and for both cases, P ≥ PMIN and P ≤ PMAX. 
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It is important to note that the samples for each parameter are independent of 

the other parameters within a sub-basin and that each parameter is sampled 

independently across all sub-basins within the spatial distribution system. This is 

an attempt to preserve the physical integrity of the model. It is assumed that 

without this independence the individual impacts of the sub-basins may be 

understated or overlooked. From Table 6.1 it can be seen that uncertainty can be 

associated with all of the input parameters of the models, while only the natural 

hydrology parameters are included in the parameter estimation program. 

Therefore, it is possible for users to include the effects of such influences as farm 

dams (Hughes and Mantel, 2010) or irrigation abstraction developments in the 

uncertainty analysis. However, estimating the statistics on the uncertainties for 

these parameters would have to rely on the methods that are not included in the 

framework at this stage. 

 

The parameter estimation process discussed in Section 6.2 assumes that the 

parameter distribution will be either Normal or log-Normal, based on the 

assumption and interpretations of the physical basin property data that were 

discussed in Chapter 4. This implies that some parameter values are more 

probable than others. If this implication cannot be supported by the available 

information then it will almost always be more appropriate to use a uniform 

distribution with minimum and maximum values set to realistic limits. This issue 

is mostly relevant to any of the parameters that have not been included as part of 

the parameter estimation process, or where the data used in this process (AGIS, 

2007) are not available.  
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Table 6.1 An example of the input parameter table for use with the uncertainty 

version of the Pitman model. 

Parameter 

Mean 

Value 

SDev 

Value Skewness 

Dist. 

Type Minimum Maximum 

Rain Distribution Factor 1.28 0 0 0 0 0 

Proportion of impervious 0 0 0 0 0 0 

PI1 Summer 1.955 0.282 0.254 1 0 5 

PI1 Winter 1.954 0.284 0.266 1 0 5 

PI2 Summer 3.985 0.021 -0.005 1 0 5 

PI2 Winter 3.985 0.022 0.001 1 0 5 

% Area of Veg2 (AFOR) 20 0 0 0 0 0 

Veg2/veg1 Pot. Evap. 1.4 0 0 0 0 0 

Power of veg (not used) 0 0 0 0 0 0 

Annual Pot. Evaporation 1400 0 0 0 0 0 

Summer ZMIN 61 11.503 -2.798 1 0 200 

Winter ZMIN 61 11.503 -2.798 1 0 200 

ZMEAN 233.127 0 0 0 0 0 

ZMAX 1027.4 35.122 -0.114 1 0 5000 

ST (mm) 174.792 28.259 0.026 1 10 5000 

SL (Min Recharge S) 0 0 0 0 0 0 

POW 2 1.01 9.97 2 1 10 

FT (mm) 4.963 1.614 0.175 1 0 1000 

GW 14.282 2.833 1.246 1 0 1000 

R (Evap/storage relation) 0.5 0 0 0 0 0 

TL (Surface Q delay) 0.25 0 0 0 0 0 

CL (Channel Routing) 0 0 0 0 0 0 

Irrigation Area 0 0 0 0 0 0 

Return flow fraction 0 0 0 0 0 0 

Effective Rainfall 0 0 0 0 0 0 

Non Irrig Direct Demand 0 0 0 0 0 0 

Max. Dam storage 0 0 0 0 0 0 

% Area above dams 0 0 0 0 0 0 

A in Area = A*vol^B 0 0 0 0 0 0 

B in Area = A*vol^B 0 0 0 0 0 0 

Irrig. Area from Dams 0 0 0 0 0 0 

Channel Loss TLGMax 0 0 0 0 0 0 

GPOW 3 0 0 0 0 0 

Drainage Density 0.4 0 0 0 0 0 

Transmissivity 8 1.6 0 1 1 500 

Storativity 0.002 0 0 1 0.001 0.8 

Regional GW slope 0.01 0 0 0 0 0 

Rest water level 25 0 0 0 0 0 

Riparian Strip Factor 0.2 0 0 0 0 0 

GW Abstraction (Upper) 0 0 0 0 0 0 

GW Abstraction (Lower) 0 0 0 0 0 0 

 
Note: ● Dist Type refers to the distribution type used in the uncertainty analysis.  1 and 2 indicate 

where the normal and the log-normal probability distributions respectively were used. 0 

indicates where no uncertainty was considered. 

 

. 
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Figure 6.2 Screenshots of the uncertainty version of the Pitman model 

showing a model run for basin Q92F set to generate 20 000 

output ensembles. The upper part of the diagram shows the 

SPATSIM step to choose a process (or model) to initiate. 

 

Model Outputs 

The model produces ensembles of simulated flows (Figure 6.1) which are saved 

as time series in the SPATSIM database. Additional outputs are saved to two 

separate text files, with .un1 and .un2 extensions. The full name of the files is 

given in the form pitmV3_ (basin ID).un1; for example the .un1 and .un2 files for 

basin Q92F will be written as pitmV3_Q92F.un1 and pitmV3_Q92F.un2 

respectively. The .un1 file contains the list of sampled parameter values, the 

simulated mean monthly runoff volume (m3 * 106), the simulated mean monthly 

recharge (mm), the slope of the flow duration curve (FDC) and the 10th, 50th and 



 139

90th percentiles (as volumes in m3 * 106) on the annual FDC for each of the 

outputs. The first is used for the volume (runoff ratio) constraint, the second for 

the recharge and the third is the slope of the FDC constraint. If observed data are 

available and have been included as part of the model setup, five objective 

functions are also written out for each of the ensembles. These are the Nash 

coefficient of efficiency (CE, Nash and Sutcliffe, 1970) for untransformed values, 

natural logarithm transformed and inverse values and the percentage difference 

of mean monthly flows for untransformed and natural logarithm transformed 

values. Zero flows are ignored when using the natural logarithmic transformation. 

CE is one of the most widely used measures of goodness-of-fit in hydrological 

modelling. It is a dimensionless index of correspondence between the simulated 

and observed time series. It is written mathematically as: 

 

CE =   1    -  {∑ (Qobs – Qsim)
 2 / ∑ (Qobs – µobs)

 2} ............................ 6.4 

 

where Qobs is the observed time series, Qsim the simulated time series and µobs is 

the mean of the observed series. CE can assume any values between -∞ and 1 

with the latter indicating a perfect fit between the observed and the simulated 

flows. When CE takes the value of zero, the simulated flow is no better estimator 

than the mean of the observed flows and a negative value indicates that the 

simulated flow is a worse estimator than the mean observed flow. CE has been 

observed to give relatively high values even for some visually poor simulations. It 

is also difficult to get high CE values in basins or periods where the variation of 

streamflow is low. The value of CE is sensitive to systematic errors. 

 

The percentage error of the mean monthly runoff (MMR) is a measure the 

percentage deviation in the mean monthly flow of the simulated from the 

observed. A perfect correspondence between the hydrographs results in a value 

of zero with poor simulations being shown by an increasing divergence from zero. 

Low, near zero values of this objective function would be an indication of low bias, 

high positive values would indicate an under-estimation of the historical observed 

flows, and high negative values would indicate an over-estimation. If the absolute 

value is considered, then a high value would indicate a systematic error (often 

referred to as bias). This objective function can be expressed mathematically as: 

 

 %Mean = 100 * (MMRobs – MMRsim)/ MMRobs ..................................... 6.5  
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where MMRobs and MMRsim refer to the MMR of the observed and simulated time 

series respectively. 

 

The .un2 text file (written as pitmV3_(basin ID).un2) contains four columns of 

monthly flows for each month of the simulation period. The first three columns 

are the 5th, 50th (i.e. the mean) and 95th percentiles of the monthly flows of the 

output ensembles. For any month of the modelling period, all the model outputs 

(number depends on the number model runs specified, 5000 being the default) 

for that month are ranked and the percentiles are calculated. It should be noted 

that these do not represent actual simulated time series, but are the bounds 

within which 90% of the output ensembles would fall. This is necessary in order 

to draw the envelope around the ensemble outputs and determine the full range 

of output uncertainty. A narrow range would reflect less uncertainty and may 

indicate higher chances of the parameters being identifiable. The final time series 

(fourth column) is a copy of the ‘observed’ data passed to the model from 

SPATSIM for reference purposes (if included in the model setup). These 

‘observed’ values could be real historical observed flows from a gauging station or 

could be some other reference time series used for comparison with the simulated 

outputs ensemble (e.g. in South Africa, the WR90 or WR2005 simulated flows, 

used for water resources estimations and planning as the national ‘conventional 

wisdom’ can be used in the absence of observations). The contents of .un2 can be 

presented together with the ensembles as in Figure 6.3.  
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Figure 6.3 An illustration of the presentation of the contents of the 

output file .un2. The black, red and blue graphs represent 

the observed flow, 95th percentile and 5th percentile 

respectively. The grey graphs are samples of model output 

for a sub-basin (V60A) of the Sundays River in the Tugela 

River system V60A.  

 

The contents of the .un1 text files (i.e. output ensembles) can be analysed in 

either the regional sensitivity analysis software (Section 6.3) or in excel 

spreadsheets. Using the later it is possible to perform an overall uncertainty 

assessment for the Pitman model by comparing the uncertainty generated 

through the parameter estimation process with that resulting from the various 

constraints (see Chapter 6). To define the limits of acceptability of the outputs 

based on the constraints, the ±95% prediction interval about the regional (where 

applicable) regression equations are determined. The prediction limits are derived 

from the characteristics of a standard Normal distribution (with mean 0 and 

standard deviation 1) where the 95% of the distribution falls within ±2.2 standard 

deviations about the mean. When considering the constraints, a standard 

deviation (σ) for any given region is calculated and then used to determine the 

boundaries of the prediction interval about the graph of the regression 
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relationship. For instance, for the runoff ratio constraint, the general equation is 

given by; 

 ln(Q/P) = A* ln(P/PE) + B ............................................................. 6.6 

 

where A is the slope and B is the intercept of the regression relationship. The 

limits of the prediction interval (5th and the 95th, representing respectively the 

lower and upper limits) would be given by; 

 

  e[A*ln(P/PE) + B ± 2.2σ] .......................................................................... 6.7    

 

The members of the output ensembles are then used to calculate the constraint 

metrics. For each metric, the results are then compared with the regional 

constraints in a simple plot as illustrated in Figure 6.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 An example of the runoff ratio analysis for a sub-basin 

(V60A) of the Sundays River in the Tugela River system. 

Also shown are simple statistical properties of the output 

ensemble, marked A to E respectively representing the 2.5th, 

5th, 50th (median), 95th and 97.5th percentiles. The 

minimum, A to E and maximum runoff ratio values are 0.17, 

0.20, 0.21, 0.23, 0.27, 0.28 and 0.35 respectively. 

 

Figure 6.4 shows that the observed constraint metric (Qobs/P) falls within the 

simulated outputs ensemble and within the regional boundaries of expected 
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behaviour. The ensembles show a bias toward somewhat higher flows than the 

regional constraint prediction limits and 0.3% of the outputs lie above the 95th 

percent prediction limit. In terms of the proposed framework these would be 

considered non-behavioural. The outputs that fall outside the regional constraint 

boundaries can be further analysed to try and identify which parameters, or 

groups of parameters, have resulted in these non-behavioural results. Such 

analysis could indicate problems with the parameter estimation equations or the 

way in which the physical basin data have been interpreted. Simple scatter plots 

of the parameter values against the objective functions (or constraint metrics) 

can be used to examine the identifiability of individual parameters (Figure 6.5).  

Based on these plots a parameter would be deemed identifiable if there is a 

distinct maximum in the scatter plots and the absence of such a distinct 

maximum indicates the difficulty to find a single optimal value that provides good 

model performances, hence the parameter is termed poorly identifiable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 An excel plot for the analysis of identifiability of parameters 

ZMIN and ST for V70D (Little Boesmans river), a sub-basin 

of the Tugela river basin. 

 

Figure 6.5 therefore suggests that the optimal values are lower than the ST 

values used in the ensemble generation. There is no clear optimal value for the 
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parameter ZMIN. It is also possible to use facilities in SPATSIM to display and 

analyse the model outputs ensemble. This can be achieved using the TSOFT 

facility. TSOFT is a generalised time series graph display and analysis software 

package provided with SPATSIM. TSOFT is designed to work with data reference 

files called ‘Profiles Files’ and these can contain references to records in a 

database table (such as a SPATSIM time series attribute table) or to binary files 

generated by different models and stored in the database (Hughes and Forsyth, 

2006). To use this facility, one needs to create this profile (saved as a .prf file) 

first and then specify the data (time series attributes) that will be contained in 

this profile. Figure 6.6 shows a TSOFT display of 10 members of the simulation 

outputs ensemble (size 20 000) for a sub-basin (V60A) of the Sunday River.  

 

 

 

 

 

 

 

 
 

 

 
 

 
 

 

Figure 6.6 A screen shot of the TSOFT display of 10 output ensemble 

members from the simulations of V60A on the Sundays 

River, a sub-basin of the Tugela River basin. 

 

6.3 Sensitivity Analysis 

 

The analyses of the model output ensembles through excel spreadsheets only 

identify the extent of variability in any given basin and, therefore, potential 

problem basins where the output uncertainty due to the parameter estimation 

process is higher than the constraints uncertainty. While the constraints can 

illustrate the extent of this uncertainty and identify those ensemble members that 

are not consistent with natural phenomena and/or expected hydrological 

behaviour, they fail to inform the identification of the parameters and/or 
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parameter combinations that lead to this inconsistency. Indeed, they reveal little 

about the sensitivity of the model predictions to the individual parameters, except 

where some strong change in the likelihood measure is observed in some range 

of a particular parameter (Freer et al., 1996). The model output surface is a 

product of the combined effects of the parameters and interactions 

between/among them within any given model structure. It is therefore prudent to 

assess the impact of individual parameters on the output space. Sensitivity 

analyses can be used to determine the impact of individual parameters on the 

constraints, and a software tool has been designed for this purpose based on 

techniques reported in the literature (Wagener et al., 2001; Freer et al., 1996). 

General sensitivity analysis aims at determining how the uncertainty in the model 

output can be apportioned (qualitatively or quantitatively) to different sources of 

uncertainty in the model inputs (Saltelli et al., 2008). In essence one looks at the 

effect of varying the inputs of the model on the expected outputs. If the impact is 

small, the model can be simplified either by replacing the relevant parameters by 

constants or by eliminating them altogether (Wagener et al., 2001). In the 

current study only parameter uncertainty is being looked at and the effect being 

analysed is that of the individual parameters on the model output. While the 

effects may be masked within broader uncertainty by many other sources 

including rainfall input and model structure, it is hoped that these will tend to be 

systematic given that the rainfall input and model structure have been not been 

varied. The impact of rainfall and model structure will be investigated in future 

research. 

Most contemporary sensitivity analysis techniques are derivatives of the regional 

sensitivity analysis (RSA) ideas of Hornberger and Spear (1981), Leamer (1990) 

and/or their refinements by later workers like Freer et al., (1996). Leamer (1990) 

suggested that sensitivity analysis is where, “a neighborhood of alternative 

assumptions is selected and the corresponding interval of inferences is identified. 

Conclusions are judged to be sturdy only if the neighborhood of assumptions is 

wide enough to be credible and the corresponding interval of inferences is narrow 

enough to be useful”. The basic idea of a sensitivity analysis involves a 

comparison of the model output ensembles against a chosen assessment criterion 

which could be an objective function or any given flow metric (e.g. any of the 

constraints). In principle the RSA method evaluates sets of parameter values in 

terms of model performance without making assumptions about their frequency 

distribution characteristics (Demaria et al., 2007) and is based on a Monte Carlo 
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sampling of the parameter space (Hornberger and Spear, 1981; Freer et al., 

1996).  

The implementation of the RSA method adapted for this study is related to the 

way it is used in the Monte Carlo Analysis Toolbox (MCAT, Wagener et al., 2001) 

and is based on the modifications by Freer et al. (1996) which do not rely on a 

determination of a threshold to distinguish between behavioural and non-

behavioural parameters (Demaria et al., 2007). While the Wagener et al. (2001) 

method ranks the model output ensemble on the basis of a chosen objective 

function, the sensitivity analysis tool used in this study can also rank the outputs 

using the constraint metrics. This approach is more robust as it assesses the 

impact of the parameters (and any other source of uncertainty that may be 

considered) where there are no historical records. This represents an alternative 

approach to RSA that can be applied in ungauged basins. Until now, it has not 

been easy to do a sensitivity analysis in ungauged basins because either the 

determining of the performance or behaviour thresholds or the use of objective 

functions presupposes the existence of reasonably accurate historical records. 

Such records are not readily available in the region (Kapangaziwiri, 2008).  

Firstly, using the .un1 files, the output ensembles are ranked on the basis of the 

assessment criterion (either an objective function or any flow metric included in 

the output file) and then sorted into five equal groups.  While any number of 

groups can be used, five are deemed sufficient for the purposes envisaged for the 

program and for ease of display of the results. The normalised cumulative 

frequency distribution of the parameters of each group is then plotted with 

respect to the model performance based on the selected objective function or 

with respect to the selected metric to assess the impact of individual parameters. 

If a flow metric is selected that forms part of one of the regional constraints 

(mean monthly flow or the slope of FDC, see Figure 6.7) an additional two groups 

can be created. The information entered in D of Figure 6.7 is used together with 

the constants of the constraint regression equation (currently hard-coded within 

the program) to calculate the 95% prediction limits. Any of the ensembles falling 

either above or below these limits are extracted into the ‘above behavioural’ and 

‘below behavioural’ groups (Figure 6.8) and plotted separately. The remaining 

ensemble members are equally divided into the 5 main groups discussed above.  

Figure 6.7 shows a screen shot of the setup screen for the program that allows 

the user to select the parameters and the assessment.  The top row of Figure 6.7 

indicates the .un1 file that has been loaded and the number of ensemble 
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members within the file. The top left hand side window contains all the 

parameters of the model, from which a maximum of 9 can be selected for 

analysis. The limitation of 9 parameters is related to the number of graphs that 

can be displayed on a standard computer screen without making them too small. 

After highlighting the parameters for assessment, these are loaded into the 

bottom left hand side window by double clicking in the window (labelled 

‘parameters selected’). The assessment criteria are given in the circles A and B, 

where A is the group of flow metrics and B is the group of objective functions. 

The chosen assessment criterion is loaded into C. If one chooses to use any of the 

flow metrics, then D is activated and the user will need to input the data required 

which includes the region number (from the regionalised constraints), the basin 

area (km2, this would be the cumulative area in the case of multiple contiguous 

sub-basins), mean annual precipitation (mm), mean annual potential evaporation 

(mm) and elevation range (m). These are necessary for the determination of the 

ensemble members that lie inside or outside the constraint boundaries. The ‘Go’ 

button is used to perform the analysis after all the necessary selections have 

been made.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Screenshot of the regional sensitivity analysis tool. 
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Figure 6.8 provides an example of the sensitivity analysis results. The sensitivity 

of individual parameters is measured by the degree of divergence between the 

normalised cumulative frequency curves of the five groups. The wider the 

separation of the curves indicates that the parameter under review is very 

sensitive based on the assessment criterion selected. Figure 6.8 shows that 

parameters GW, FT and POW are the most sensitive, while PI and ZMIN are the 

least sensitive. If an objective function assessment criterion has been selected, 

the diagrams can be used to indicate the range of parameter values that give the 

best result. However, problems with equifinality often result in this range being 

quite large (e.g. 10 – 30 mm/month) for GW in Figure 6.8. Frequency curves that 

are steep and where the top and lower 20% lines are well separated suggest 

identifiable parameters, none of which is evident in Figure 6.8.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Illustration of the sensitivity analysis of 9 parameters based 

on the CE objective function for a sub-basin (C12D) of the 

Vaal River in South Africa.  

If one of the flow metrics that form part of the regional constraints has been 

selected, the RSA can be used as a rapid check to identify how many members of 
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an output ensemble are non-behavioural. If a large number of members of an 

ensemble are rejected, it may be necessary to revisit some of the parameter 

estimation equations, the basin physical data that were used or the interpretation 

of these data. Figure 6.9 shows the results of an earlier attempt to constraint 

model outputs from A42B, a sub-basin of the Mokolo River basin, using the mean 

monthly flow metric. In this case 9286 members of the output ensemble (20 000) 

were above the upper prediction limit of the regional constraint of runoff ratio 

(Q/P) suggesting that some part of the parameter estimation process was not 

successful. The diagram suggests that excessive values of both FT and GW are 

the major cause (see the dark green graphs for both parameters in Figure 6.9).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 An illustration of how the additional information about the 

constraint is used to separate the behavioural from the non-

behavioural ensemble members.  
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6.4 Summary  

 

The efficient and, most importantly, consistent execution of the framework 

(Chapter 3) depends on the availability and/or development of appropriate 

software to support its implementation, otherwise it may be difficult to realise the 

intended goals. The main goal of the framework is to provide a consistent 

practical approach to model application that is capable of giving hydrologically 

plausible simulations in both gauged and ungauged basins of the region. Such an 

approach is expected to not only use the best knowledge available in the region 

but also to realistically incorporate the uncertainty in that knowledge. The tools 

discussed in this chapter relate to the generation of uncertain model parameter 

inputs, generation of ensembles from the population of all possible (or plausible) 

model outputs and assessments of the impact of the individual parameters on the 

results of the model. This section examined the development and use of these 

tools and explored how they are used in conjunction with each other to define and 

implement routine hydrological modeling strategies and/or objectives for sound 

scientific and practical application in water resources management.  

The summary of the links between the tools is shown in Figure 6.10. This shows 

that the tools are part of an integrated system of hydrological modelling that can 

be used to store, manage, manipulate, analyse, present and interpret results. The 

tools occupy a niche within this system that enables uncertainties related to the 

parameterisation of the model to be accounted for and propagated through to the 

model output. Such information is necessary for practical use of models and 

modelling results especially when data scarce areas are being considered. A 

feedback loop, aimed correcting possible errors and improve utility of the tools, is 

also included within the execution of the tools.  
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Figure 6.10 An illustration that summarises the linkages between the 

tools developed to implement the framework 

The tools discussed in this chapter are practical and can be used with ease. The 

automation and packaging of the tools into a software package should make them 

manageable to use (with little training) by practitioners in the water sector. Use 

of the tools is envisaged to increase the chances of water practitioners taking 

actions consistent with current scientific norms and best practice in water 

resources planning. Such actions should also be consistent across different users 

within the same or similar systems. Their major strength lies in the fact that they 

are flexible and are useable with existing common water resources assessment 

tools that have been used for a long time within the region. This implies that 

practitioners are unlikely to resist their introduction as they are essentially an 

additional facility aimed at improving the tools they are familiar with and the 

manipulation and interpretation of results thereof. The use of the tools should, 

therefore, increase the realiability and confidence that can be expressed in the 

model results. The possibility of integration into SPATSIM means the management 

and storage of results can be done in a common database for ease of use.  The 

tools are quite clear and robust enough to produce results that are not difficult to 

understand. They are used to achieve specific scientific and practical goals (i.e. 
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estimation of model parameters and their sensitivity analysis), important steps in 

assessing the hydrology of any given basin.   

In the context of water resources management and decision making, the 

framework and the tools for its implementation represent a methodology for 

developing a common and consistent scientific development for effective decision 

making and outlining the process by which these will be made. The tools help to 

provide practical solutions to the problem of making predictions of hydrological 

fluxes in ungauged basins. The information that they produce is important for 

making these decisions with more confidence than is currently the case. If water 

managers or practitioners are aware of the limitations of their information or the 

uncertainties thereof, they will be cognizant of the risks attendant to the decisions 

that they will make. Thus, for the purposes for which they have been designed, 

the tools appear quite adequate. However, in order to realize the potential and 

value in these tools (and the framework), sufficient and credible data is required 

and this may require some investment. This is premised on the understanding the 

effectiveness of tools will be very much dependent on the extent to which the 

information available suits the needs of the management requirements and 

targets within any water resource management area.  
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CHAPTER 7  

RESULTS AND DISCUSSION OF EXAMPLE 

APPLICATIONS 

 

7.1 Introduction 

 

This chapter presents the results of applying the various tools discussed in the 

preceding chapters with the Pitman model (Pitman, 1973). The tests were carried 

out using South African basins. While the whole point of taking the approach 

contained in this study is to use data on basin hydro-climatic and physical 

attributes that are relatively easily available within the region to estimate model 

parameters (Chapter 4) and constrain model outputs (Chapter 5), these data are 

not available throughout the region at the same resolution. South African data 

represent the best possible data available (in terms of both quantity and quality) 

and have been used to develop and test the applicability of the components of the 

framework (Chapter 3). Application in other parts of the region may require 

adjustment of the framework components to suit local data conditions. The 

results and discussion on the preliminary application of the framework, based on 

selected basins in South Africa, are presented. The results are a development of 

the earlier attempt at incorporating various sources of uncertainty into the Pitman 

model simulations by Hughes et al. (2008).  

 

7.2 Description of example basins 

 

There were 46 test basins used in this study and these were selected to span the 

possible ranges of hydro-climatic and geo-physical conditions obtaining in the 

country. Table 7.1a shows the hydro-climatic information of the selected basins, 

Table 7.1b summarises the ensemble results, while Table 7.1c shows the physical 

descriptions of some of the basins (note that the full list of basins is given in 

Appendix A). Table 7.1b includes the minimum and maximum of the simulated 

values of the three constraint variables. While observed stream flow data are 

available for 20 of the selected basins, the rest are ungauged. However, all the 

sub-basins are treated as ungauged in the parameter estimation process and 

tested against the constraints. Where the gauged data are available, these 

provide an additional test for the parameter estimation procedures. It should also 

be noted that most of the parameter PDFs are Normal and the uncertainty 

distributions of the output ensembles are therefore close to being normally 
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distributed as well. The ranges of the values given in Table 7.1b represent the 

tails of these distributions and a large number of the ensembles will lie within a 

narrower band.  

 

The model was applied to all basins for the standard WR90 (Midgley et al., 1994) 

70 year period from October 1920 to September 1990 using the WR90 rainfall 

data as inputs. This was necessary for purposes of comparison and drawing 

reasonable conclusions from the study without the influence exerted by the length 

of modelling period (Gorgens, 1984; Siebert and Beven, 2009). The time period 

used is long enough to be able to capture most of the expected hydrologic signals 

(low and high flows and extremes such as floods) observable in the region. The 

input data requirements to force the model (rainfall and evaporation demand) 

were assumed invariable and were taken from Midgley et al. (1994), while the 

parameters (and their feasible spaces) were estimated by the methods outlined in 

Chapter 4 and in Kapangaziwiri (2008) and Kapangaziwiri and Hughes (2008). 

While all parameters are capable of being applied with uncertainty, only the main 

runoff generation, moisture store, accounting and ground water accounting 

parameters were assessed for uncertainty. This was because these are the most 

critical parameters pertaining to natural hydrologic processes and most of those 

not considered account for human influences. Table 3.1 and Table 3.2 list all the 

Pitman (Pitman, 1973) model parameters and give brief descriptions. While the 

WR2005 (Bailey, 2009) data became available towards the end of this study, 

there was not enough time to pre-process these data. The results are not 

expected to be inconsistent with those derived from the WR90 study (Midgley et 

al., 1994). The WR2005 (Bailey, 2009) data are an update of the WR90 

information (Midgley et al., 1994) adding 15 years to the time series of rainfall 

and river flow data. While there are changes in some components (e.g. changes 

in MAR or MAP), these are not substantial and were not expected to make a large 

difference to the results of the present study. However, pre-processing of the 

data has already started and will be used to update the results of this study in the 

longer term. 
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Table 7.1a A summary of the hydro-meteorological properties of the test 

basins. 

 

Min 

GRAII 

Mean 

GRAII 

Max 

GRAII 

Site Region  
P 

(mm) 

PE 

(mm) 

Area 

(km2) P/PE 

Elev 

Range 
(m)  

Obs. 

Q/P Mean annual recharge (mm) 

A42A 2 639.9 1700 573.4 0.376 113 U/G 10.16 33.88 55.61 

A42B 2 659.9 1700 521.6 0.388 174 U/G 13.01 37.48 62.56 

A42C 2 651.8 1700 1793.3 0.383 192 U/G 12.23 36.57 60.92 

A42D 4 667.3 1700 496.6 0.393 139 0.202 15.16 39.64 66.85 

A42E 4 639.7 1731 3297.2 0.37 157 U/G 7.2 28.85 46.04 

A42F 3 624.9 1747 4318.8 0.358 110 U/G 7.2 27.89 44.68 

A92A 4 831.2 1500 328.9 0.554 202 0.414 60.23 74.12 134.06 

B41G 3 650.2 1500 149.5 0.433 302 0.143 27.11 47.68 83.73 

C12D 2 666.9 1580 899 0.422 32 0.091 11.63 36.46 60.32 

D55C 5 217 2150 760.4 0.101 78 U/G 0.75 7.22 10.09 

G10E 5 639.9 1635 394.1 0.391 469 0.384 20.88 42.75 73.82 

H10A 5 512.4 1670 233.7 0.307 393 U/G 11.17 30 50.43 

H10B 5 707.8 1650 162.5 0.429 361 U/G 41.78 58.46 104.62 

H10C 5 624.6 1650 655.7 0.379 428 0.292 22.85 45.74 79.23 

J33C 4 292.9 2070 428.1 0.141 310 U/G 1.66 10.29 14.74 

J33D 5 379 1980 258.9 0.191 415 U/G 4.7 17.94 28.58 

K40A 4 705.6 1400 87.5 0.504 149 0.18 20.86 45.94 78.95 

K40B 3 845.6 1400 111.6 0.604 201 0.175 34.93 61.99 108.85 

M10B 4 557.5 1600 392.9 0.348 210 U/G 7.86 27.93 44.26 

N24A 5 246.3 1950 665.8 0.126 67 U/G 0.24 5.83 6.54 

Q14A 4 348.2 1850 485.7 0.188 178 U/G 5.57 18.47 30.33 

Q14B 4 345.1 1850 725.3 0.187 229 U/G 5.53 18.13 29.68 

Q92F 2 414.7 1650 665.3 0.251 232 U/G 0.61 10.6 12.7 

R20A 2 1010.7 1450 139.4 0.697 209 0.255 32.4 67.31 116.18 

R20B 2 844.9 1450 294.1 0.583 132 0.216 10.22 35.65 58.04 

R20C 2 800.2 1450 121 0.552 152 0.161 14.45 43.63 72.15 

R20D 2 733.1 1450 673.5 0.506 70 0.152 4.69 24.62 38.03 

S60C 3 668.5 1500 215.8 0.446 202 0.127 15.23 39.89 67.33 

T35C 3 916 1400 306.1 0.654 374 0.21 39.78 67.71 119.06 

T40A 1 994.5 1200 208.1 0.829 251 U/G 109.46 126.36 203.08 

T40B 1 979.4 1200 277.7 0.816 257 U/G 97.46 98.36 180.6 

T40C 2 934.4 1200 722.9 0.779 132 0.273 87.79 95.01 162.19 

U20A 2 1009.8 1300 293.3 0.777 210 U/G 51.83 79.94 142.13 

U20B 1 987.8 1300 352.9 0.76 149 0.229 41.1 72.63 127.59 

U20C 1 977.9 1285 925.1 0.761 159 U/G 35.43 66.33 115.87 
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V20A 2 1024.6 1300 267.1 0.788 201 0.383 61.67 85.4 153.01 

V60A 2 891.1 1400 106.8 0.637 151 0.198 31.82 62.11 108.1 

V60B 2 851.1 1500 659 0.567 166 0.155 29.77 58.88 102.34 

V70D 2 810.8 1350 198.4 0.601 126 0.191 25.16 53.29 91.75 

X11A 1 681.7 1450 671.7 0.47 32 U/G 25.4 48.14 83.99 

X11B 1 714.2 1450 596.6 0.493 55 U/G 29.84 52.57 92.44 

X11C 1 700.4 1450 1588 0.483 45 U/G 34.49 55.4 98.15 

X21A 3 763.2 1400 264.9 0.545 198 U/G 36.43 58.88 104.26 

X21B 3 730.9 1400 643.2 0.522 228 U/G 35.47 55.58 98.67 

X21C 3 739.5 1400 954.3 0.528 270 U/G 36.95 58.88 104.39 

X31A 2 1241.1 1400 174.0 0.887 307 0.370 100.86 115.88 210.88 

 

 

Table 7.1b A summary of the ensemble results for the test basins. 

 

Site Min Q Max Q 
Min 

FDC 

Max 

FDC 

Min 

Rchg 

Max 

Rchg 

A42A 1.352 5.753 1.67 4.2 5.3 44.7 

A42B 2.527 5.128 1.72 4.09 9.6 41.4 

A42C 9.92 18.85 1.99 2.93 8.1 42.3 

A42D 2.969 6.864 1.68 3.54 13.2 71.7 

A42E 19.079 30.878 1.98 2.91 3.1 35.8 

A42F 23.324 37.917 1.96 2.74 2.5 28.3 

A92A 4.099 10.418 2.03 4.49 15.8 106.4 

B41G 1.045 1.967 2.04 4.59 21 75.6 

C12D 1.971 7.669 3.08 13.14 4.3 20.3 

D55C 0.63 3.88 3.69 9.05 0 54.1 

G10E 6.034 9.9 1.97 5.9 11.7 197.5 

H10A 2.228 4.011 3.43 8.08 18.8 130 

H10B 3.281 4.484 3.79 8.13 14.2 113.7 

H10C 9.016 13.307 4.55 7.55 31.3 96 

J33C 0.15 1.188 2.74 4.81 0 21.5 

J33D 0.828 2.145 2.37 4.32 18.2 75 

K40A 0.433 1.091 1.74 4.43 0 37.7 

K40B 0.656 1.806 1.18 2.27 37.1 105.3 

M10B 2.011 4.991 2.2 5.44 8 94 

N24A 0.426 1.404 2.87 4.11 0 4.3 

Q14A 0.372 2.385 2.99 4.91 0 40.6 

Q14B 1.009 3.547 3.56 6.46 4.5 22.9 

Q92F 0.531 2.953 2.9 9.93 0 50.4 

R20A 1.953 4.989 1.78 4.57 18.5 165.3 
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R20B 3.219 7.425 1.87 4.34 0 110.4 

R20C 0.908 2.749 1.73 9.01 0 111.9 

R20D 4.879 12.924 2.02 3.53 0 67.7 

S60C 0.745 1.712 1.58 3.23 13.5 52.4 

T35C 3.307 5.182 1.32 2.28 64.2 123.8 

T40A 4.97 6.515 1.42 2.53 146 219.8 

T40B 4.392 6.196 1.44 2.68 101.5 147.1 

T40C 14.39 17.094 1.5 2.14 120.7 171.4 

U20A 4.437 7.266 1.76 3.89 57.6 129.7 

U20B 4.567 8.091 1.57 3.69 48.5 113.7 

U20C 14.425 19.681 1.99 3.16 14.5 123.8 

V20A 6.585 11.417 2.14 3.39 61.1 188.8 

V60A 0.842 2.247 2.36 5.85 34.1 111.1 

V60B 4.494 8.496 1.92 3.16 34.4 89.7 

V70D 1.594 3.128 1.39 2.32 34.4 91.7 

X11A 2.237 5.908 1.73 2.94 27.1 80 

X11B 2.785 6.583 1.81 2.97 33.1 82.4 

X11C 8.822 13.937 1.88 2.77 41.7 108.7 

X21A 2.226 4.291 1.81 4.88 49.9 125.2 

X21B 5.470 8.540 1.62 4.37 44.6 110.2 

X21C 8.680 12.395 1.69 3.94 43.9 111.4 

X31A 5.647 7.585 1.68 3.04 141.5 221.4 

 

Notes for Tables 7.1a and 7.1b:  

• Region refers to the ‘Budyko’ region (see Figure 5.2) 

• P and PE are mean annual precipitation and potential evaporation (mm/year). 

• Simulated Q (Min and and Max) represent the full range of the simulated mean monthly 

runoff volumes (106 m3) for all 10 000 ensembles. 

• U/G refers to ungauged basin. 

• Elev. Range is the elevation range within the catchment (m). 

• Simulated FDC (Min and Max) represent the full range of the simulated slopes of the 

annual flow duration curve (as defined in Section 5.2.2) for all 10 000 ensembles. 

• The three mean annual recharge estimates from the GRAII database (Min, Mean and Max 

GRAII). 

• Simulated Recharge (Min and Max) represent the full range of the simulated mean 

annual groundwater recharge (mm) for all 10 000 ensembles.  
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Table 7.1c Brief physical descriptions of a sample of the sub-basins assessed 

in this study. 

 

Sub-basin Gauge Physical description 

C12D C2H004 Undulating topography, moderate to deep clayey soils, inter-

bedded shales and sandstones. 

G10E G1H008 Steep topography, moderately deep, porous sandy loams with 

some impermeable lenses; unconsolidated sedimentary 

strata.  

H10A 

H10B 
H10C 

Ungauged 

Ungauged 
H1H003 

Steep, moderately deep sandy loams; Karoo shales and 

sandstones. 

K40A K4H003 Steep topography, shallow to moderate loamy sands; 
fractured granite.  Present day impacts of plantations. 

R20A 

R20B 
R20C 
R20D 

Ungauged 

Ungauged 
R2H006 
ungauged 

Undulating topography, moderate to deep sandy loams; 

fractured granites. 

U20A 
U20B 

U20C 

Ungauged 
U2H007 

Ungauged 

Undulating topography, moderate to deep clays; fractured 
sedimentary strata. 

V20A V2H005 Undulating to steep topography, moderate to deep clayey 

loams; Karoo shales, sandstones, grit and coal. 

V70D V7H012 Steep topography, moderate to deep, clayey soils; inter-
bedded mudstones, shales and sandstones. 

X31A X3H001 Steep topography, moderately deep sandy clay loams; 
dolomites and limestone. 

 

 

7.3 Constraint analysis of model output ensembles  

 

The procedure followed for analysis was to compare the model output ensembles 

with the three constraints referred to in Chapter 5. For all the basins, each output 

ensemble consisted of 10 000 model simulation results and the output text file 

.un1 was used for this analysis. As stated in Chapter 5 the extent of the 

uncertainty associated with a constraint was defined by ±95% prediction limits of 

the regression equation between the constraint and its hydro-climatic and/or 

physical predictors (Figure 7.1). For each ensemble member, the value of the 

constraint was computed and the results of all output ensembles were compared 

with the three constraints: 

� The volume constraint based on 95% prediction intervals for the regional 

relationships between P/PE (aridity index) and Q/P (runoff ratio), 

explained in Section 5.2.1. 

� The gradient of the FDC constraint based on 95% prediction intervals for 

the relationship, explained in Section 5.2.2. 

� The ranges of groundwater recharge estimates provided in the GRAII 

database (Section 5.2.3). 



 159

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Illustration of the general constraint and predictor variables 

relationship used in this study. The analysis of model output 

ensembles produces the four possible outcomes (categories 

A to D). 

 

There are a number of possible outcomes (or categories) associated with the 

process of constraining hydrologic response using the regionalized indices of 

hydrologic functional response characteristics (Figure 7.1). Category A represents 

the situation where the model output uncertainty is less than the uncertainty in 

the regional constraints, i.e. the range of variation of the output is within the 

constraint boundaries. This implies that the parameter estimation procedure has 

produced sets which generate acceptable outputs based on the metric of 

assessment, all the results are consistent with measured and expected hydrologic 

response and they are all behavioural (Beven and Binley, 1992; 2001). It should 

also be noted, however, that if the prediction limits of the constraints 

relationships are quite wide there would remain a high degree of uncertainty in 

the definition of behavioural response.  

 

Category B is where the range of model ensemble results lies beyond both 

constraint limits (Figure 7.1). In this case, the constraint boundaries will 

determine the limits of acceptability of the model outputs. The ensemble 

members determined as non-behavioural (i.e. beyond the constraint limits) will 



 160

then be rejected. While this scenario indicates that some of the outputs are 

behavioural, the range of variation is too large and may indicate some latent 

problems either with the understanding or representation of the basin processes 

(e.g. presence of dolomites or large swamps/dambos), the applicability of the 

estimation procedure or the suitability/interpretation of available basin data.  

There are two possible courses of action in this situation. The first is that only 

those parameter sets giving results that fall within the regional constraints are 

accepted as behavioural and the model results generated by these parameter sets 

are used in any further analysis. This approach completely ignores the non-

behavioural outputs and the parameter sets that produce them. The alternative is 

to identify (if possible) the part of the parameter estimation process that 

generates the non-behavioural results and use this information to re-assess the 

parameter estimation equations. While this approach has the potential to lead to 

an improvement in the parameter estimation process (and probably its credibility 

and robustness), it should be recognized that the degree of equifinality (Beven, 

1993), and a frequent lack of identifiability of the parameters of the Pitman model 

may make this approach ineffective. 

 

Categories C and D are where the range of variability in the model outputs is 

predominantly above (or below) the upper (or lower) constraint boundary (Figure 

7.1). This indicates a bias towards either over- or under-simulation in the model 

output ensembles. Extreme examples of C and D occur when none of the outputs 

lie within the constraint limits. Such scenarios may indicate inconsistency 

between the model and the constraints and, therefore, demand an investigation 

of the parameter estimation or the constraint development processes. The case 

where all the outputs are outside the constraint boundaries is a cause for concern 

because it may suggest a complete failure of the parameter estimation process. 

However, it may also point to the importance of other sources of uncertainty such 

as the input data (rainfall and evaporation demand), or model structure errors, 

which are not considered here. The most logical action would therefore be to first 

examine and ascertain the validity and/or representativeness of the input data. 

This is especially important where the ability to define catchment scale estimates 

of the inputs is not ideal and the most common problem is the definition of 

rainfall inputs in mountainous areas where rainfall measurement networks are 

usually sparse. Invalid and biased forcing data inevitably result in biased and/or 

erroneous simulations which may only be detected when compared with the 

constraints. In a modelling approach that is based on calibration, the parameter 

values implicitly account for the inadequacies in the input hydro-meteorological 
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data (Andreassian et al., 2001). The same is not true where an a priori parameter 

estimation approach is used.  

 

The second step would be to interrogate the outputs in detail (see section 7.5 on 

sensitivity analysis) to identify where the parameter estimation process produces 

non-behavioural results and to question the interpretation of the catchment 

property data. In many cases during the initial testing of these methods, this 

approach yielded improved results especially when carried out in a structured 

manner by looking at the different components of the model (surface runoff 

generation, unsaturated zone runoff and ground water recharge) separately. The 

interpretation of the input basin physical data can account for some errors, and 

the main problem occurs with the subjectivity of the interpretation process when 

the spatial variability within a basin is large. The variability in the basin physical 

data and the subjectivity in its interpretation are closely linked to the scale of 

model application. However, if there are no problems with the input hydro-

meteorological data and the interpretation of the physical property data is 

realistic, it may be necessary to accept that the parameter estimation equations 

(and, possibly the model structure) are not suited to the specific catchment.   

 

In the present study, the approach discussed in the last few paragraphs has been 

applied only to the volume (runoff ratio) and the FDC slope constraints since the 

ground water recharge constraint is not constructed in same manner. The runoff 

ratio relationships are regionalized while the FDC slope is currently applied at the 

national scale.  

 

7.3.1 Volume constraint: Runoff-ratio (Q/P) 

 

For regions 1 to 5, there were 7, 16, 8, 8 and 7 basins respectively (Table 7.1). 

Figures 7.2 to 7.6 illustrate the comparisons between the output ensembles and 

the regionalized mean annual volume constraint (using Q/P). For clarity, region 2 

is presented using two diagrams (Figure 7.3 a and b). Table 7.2 shows the basis 

used for the determination of category A, C and D candidates. It was realized that 

with some sub-basins displaying only few outputs beyond constraint boundaries, 

it would be logical to have these sub-basins in A rather than either C or D. Results 

were classified as category A if only 10% or less of the outputs were beyond the 

constraint limits.  This cutoff point was chosen arbitrarily but seems reasonable as 

it limits the variability to an acceptable level. The final results are summarized in 

Table 7.3. 



 162

Region 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

P/PE

Q
/
P

Upper 95%

Lower 95%

X11A

X11B

X11C

U20B

U20C

T40A

T40B

Observed data

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 95% prediction intervals for the P/PE v Q/P relationship for 

Region 1 compared with the range of output ensembles. 
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Figure 7.3 95% prediction intervals for the P/PE v Q/P relationship for 

Region 2 compared with the range of output ensembles. 
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Figure 7.4 95% prediction intervals for the P/PE v Q/P relationship for 

Region 3 compared with the range of output ensembles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 95% prediction intervals for the P/PE v Q/P relationship for 

Region 4 compared with the range of output ensembles. 
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Figure 7.6 95% prediction intervals for the P/PE v Q/P relationship for 

Region 5 compared with the range of output ensembles. 
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Table 7.2 Analysis of outputs to determine candidates for categories A, C and 

D. Possible causes of the non-behavioural outputs is given in 

column 5. SD refers to standard deviation and the value of the 

standard deviation relative to the mean is given in brackets. 

 

  
 

 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region Basin  % Above  

constraint 

% Below  

constraint 

Possible explanation  Final  

Category 

X11A 22.37 0.00  C 

X11B 80.67 0.00 High ZMIN SD (37%) C 

1 

X11C 87.81 0.00 High ZMIN SD (40%) C 

A42A 65.66 0.00 High FT SD (50%) C 

A42B 92.78 0.00 High ZMIN SD (31%) C 

A42C 99.46 0.00 High ZMIN SD (30%) C 

C12D 11.37 1.09  C 

Q92F 98.99 0.00 High ZMIN SD (33%) C 

R20A 4.94 0.00  A 

R20B 93.97 0.00 High ZMIN SD (90%) C 

R20C 72.74 0.00 High ZMIN SD (50%) C 

R20D 62.51 0.00 High ZMIN SD (93%) C 

2 

V20A 0.51 0.00  A 

A42F 76.56 0.00 High ZMIN SD (38%) C 

B41G 22.02 0.00  C 

K40B 0.00 1.99  A 

S60C 0.00 0.21  A 

3 

T35C 0.00 15.05  D 

J33C 94.62 0.00 High FT SD (27%) C 

K40A 0.00 9.20  A 

Q14A 93.42 0.00 High ZMIN SD (40%) C 

4 

Q14B 95.42 0.00 High ZMIN SD (48%) C 

D55C 97.54 0.00 High ZMIN SD (35%) C 

H10A 1.65 0.00  A 

J33D 5.78 0.00  A 

5 

N24A 0.00 1.23  A 
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Table 7.3 Summary of the results of the frequency of occurrence of 

categories A to D in the comparison of the model output ensembles 

with the volume constraint. The values are the percentage number 

of catchments within each region falling into the different 

categories. 

 

Possible scenarios Region No. in 
region A B C D 

Description Low 

parameter 

uncertainty 

Excessive 

parameter 

uncertainty 

Parameters 

giving outputs 

above limit 

Parameters 

giving outputs 

below limit 

Runoff ratio constraint 

Region 1 7 50% 25% 13% 0% 

Region 2 16 44% 31% 25% 0% 

Region 3 8 63% 0% 25% 13% 

Region 4 8 63% 38% 0% 0% 

Region 5 7 86% 14% 0% 0% 

Total 46 59% 24% 15% 2% 

FDC slope constraint 

All regions 46 31% 2% 2% 65% 

 

Table 7.3 shows that for the runoff ratio constraint the results are generally 

acceptable and that the model output ensembles are frequently within expected 

ranges of constraint uncertainty. Only 2% of the basins produced excessive and 

unacceptable parameter uncertainty. In Table 7.3 category B includes those 

basins whose ensemble ranges were large irrespective of whether or not the 

ranges extended beyond (for at least 80% of the outputs) both constraint limits, 

e.g. Q14A and J33C (Figure 7.5). Categories C and D included those ensembles 

whose ranges of variability were lower than the B category but included outputs 

that extended either above (category C) or below (category D) the constraint 

limit. One of the key observations is that the ensemble ranges tended to extend 

beyond the upper constraint limit rather than the lower one (e.g. X11A-C in 

Region 1, V20A and R20D in Region 2, A42F in Region 3, Q14A in Region 4 and 

J33D in Region 5). This is the result of over-simulation of the mean volume. The 

implication is that there could be a systematic error in one or more components 

of the parameter estimation procedure. There is only one basin (C12D, Region 2) 

that extends beyond both the lower and upper limits of the regional constraint, 

while A42A (Region 2), J33C (Region 4) and D55C (Region 5) come quite close. 

Another observation is that the range of variability exhibited by some of the 

ensembles (e.g. R20C in Region 2), even where the ensembles are within the 

constraint limits (e.g. A92A in Region 4), is quite large. It should be noted that at 

high P/PE values the constraint uncertainty is quite high, and associated with the 

logarithmic form of the constraint prediction relationship. It is important to stress 
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that this magnitude of uncertainty may make model-reliant water resources 

decision making difficult.  

 

An examination of the topography (through Google Earth for example) and/or the 

land types of some of the problem sub-basins revealed large variabilities within  

the basins in terms of the topography and/or land types. Such sub-basins as 

H10A-C, A42A-C, R20A-D, C12D and K40A exhibited these variations and this 

may have led to a possible miss-interpretation of the basin physical property 

data. In such cases the lumped estimation process of the basin physical attributes 

leads to higher levels of uncertainty. Related to this is the scale issue, where the 

mismatch between the scales of model application and the physical basin data 

lead to more uncertain parameters. The impacts are investigated later in section 

7.4.  

 

In spite of the problems outlined in the previous paragraph, there are many 

catchments in the example set where the ensemble results are either within 

(category A, 27 out of 46) the range of regional constraints or not excessively 

outside this range (categories C and D, 8 out of 46). Thus, the parameter 

estimation procedures seem to be relatively successful for the group of basins 

studied, where success is measured against the regional runoff-ratio metric. In 

the majority of the remaining sub-basins where the uncertainty is large or the 

results are heavily biased (11 out of 46), a sizeable proportion of the ensembles 

are within the regional constraint values, suggesting that the focus of any 

improvement in the parameter estimation process should be on the outlier 

parameter sets. Many of the naturalized observed streamflow data points (section 

5.2.1) are located close to the middle of the range of the output ensembles. This 

supports the observation that the variance of the parameter uncertainty 

distributions rather than the mean (or best estimate) values requires further 

investigation. Figure 7.7 is an illustration of the location of the historical 

observations on the frequency cumulative curve for the ensemble of some of the 

sub-basins.  
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Figure 7.7 Cumulative frequency distribution of the Q/P values for the 

output ensembles compared with observed data values 

(represented by the black triangles). 

 

Figure 7.7 can be used to gauge the success of the parameter estimation process 

in a gauged sub-basin. The ideal situation is to have the observed data lying near 

the centre of the distribution. If it lies at or near the tail-ends of the distribution 

then it is either a problem with the data or the estimation of the parameter 

priors. The former is illustrated in the sub-basin H10C where the observed data is 

close to the lower end of the distribution, implying that about 94% of the 

simulations are above the observed point. However, a close examination of the 

WR90 (Midgley et al., 1994) database reveals that the naturalized and patched 

observed flow data are almost identical. This is worrying as it implies no upstream 

developments in the sub-basin when in fact there are a large number of farm 

dams (Hughes and Mantel, 2010). Thus, the naturalized observed flows obtained 

from WR90 are an under-estimate of the expected natural flows in the sub-basin. 

This clearly illustrates the hazards associated with using historical data and the 

naturalization process. The point is that in many cases the upstream 

developments and water-use are often unknown or poorly quantified. C12D 

represents an example of bias in the ensembles relative to observed data which 

was later identified as being related to the interpretation of the physical property 
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data. Section 7.4 discusses the effects of scale and the bias for C12D was 

reduced by applying the parameter estimation process at a smaller scale.  

 

In Table 7.2 (or Figures 7.2 to 7.6) there are 15 basins where more than 60% of 

the ensembles extend beyond the constraint limits (categories C and D). Further 

analysis reveals that, except for A42A and J33C, the variability of parameter 

ZMIN is quite high, from about 30% of the mean (for A42B and A42C) to 90% 

and 93% for R20B and R20D respectively. This observation can be explained in 

terms of the variability of the basin soil characteristics, whose distribution 

properties are used to determine the uncertainty of the infiltration parameters. 

However, it is surprising that the variability of parameter ZMAX is not equally 

high, and is less than 10% of the mean for all basins. The variability in the other 

basins (A42A and J33C) seems to be influenced by the large standard deviations 

of the parameter FT. In all cases, it was found that the distribution types were 

Normal, and that the output variability was not caused by highly skewed input 

parameter distributions.  

 

The uncertainty version of the Pitman model allows for the setting of minimum 

and maximum parameter values. In this study these were only set to prevent 

parameter values that are structurally impossible (e.g. negative parameter 

values). Thus, the sampling process from the Normal (or occasionally Log-

Normal) parameter distributions was effectively unconstrained. However, in 

situations where no estimation equation is available for a parameter a Uniform 

distribution is commonly used and setting the minimum and maximum parameter 

to define a sensible range becomes an important consideration. This situation 

would apply if some of the water use parameters were to be included as part of 

the uncertainty analysis.  

 

7.3.2 Gradient of the monthly Flow Duration Curve (FDC) 

 

Figure 7.8 illustrates the comparisons between the ensemble outputs and the 

constraints for the gradient of the monthly FDC. Table 7.3 lists the frequencies of 

the basins that fall into the categories A to D. 31% (14 out of 46) of the basins 

exhibit FDC ensembles that lie within the constraint limits or slightly outside (less 

than 10% of ensembles) the limits indicating that there is low uncertainty and 

almost all of the outputs are behavioural (scenario A). Only one basin, R20C, can 

be classified as category B where the ensemble range extends beyond both 

constraint boundaries and the uncertainty is excessive and unacceptable.  
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Figure 7.8 95% confidence intervals for the flow duration curve 

relationship compared with the range of ensemble outputs.   

 

The general tendency is for ensemble FDC slopes to be lower that the constraint 

boundary (category D rather than C) suggesting that the ensembles are 

generating excessive low flows. There is only one basin (R20C) whose ensemble 

ranges of FDC slopes extends beyond the upper limit (scenario C). The basins 
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that have some non-behavioural outputs based on the volume constraint also 

exhibit problems using the FDC slope criterion (e.g. K40A, K40B, T35C, C12D, 

R20C, Q14B, N24A and S60C). For instance, K40B, J33C and J33D have low FDC 

slopes for the majority of the ensembles as well as many non-behavioural volume 

ensembles. The ensembles for all the sub-basins R20A-D, A42A-C and Q14A-B 

seem to generate low FDC slopes as well as generally over-simulating the 

volume. One possible explanation of this occurrence is that there is a high degree 

of uncertainty in the values of those model parameters that generate runoff (e.g. 

ZMIN, ZMAX, FT and POW). The large standard deviations of the ZMIN and FT 

parameters were highlighted earlier. However, a closer examination of the overall 

simulations shows that the parameters seemed to properly capture the variability 

of the hydrologic regime of the various basins (some example plots are shown in 

Appendix D).  

 

There appears to be a complete failure in the case of basin N24A whose outputs 

all lay outside the lower constraint boundary. This is surprising given that the 

volumes simulated for the basin have low uncertainty with only a very small 

proportion of the outputs lying beyond the lower volume constraint boundary. 

What is also difficult to understand is that the basin is only covered by one land 

type which means there is little variation in the basin physical property data. 

N24A is a dry basin and has a high proportion of zero flows, while Figure 7.9 

clearly shows that excessive recharge is not to blame, suggesting that other 

factors or sources of uncertainty may be more important than parameter 

uncertainty in this basin. The other dry basins (D55C, Q14A-B, and J33C-D) 

display a similar trend though they are not as severe as N24A.  However, the 

general trend is towards lower slopes even in situations where the simulated 

volumes were behavioural. Even in the cases where the FDC slopes are 

behavioural, the observation has been that they are almost always closer to the 

lower, rather than the upper, limit of the constraint. A detailed examination of the 

ensembles reveals that in many of these basins there are instances where non-

zero 90% FDC values are related to some extreme FT values which are unlikely to 

be behavioural (e.g. in R20D). Another possible explanation is that the high flows 

are generally being poorly simulated by the model. It could also be because the 

FDC slope calculation is quite sensitive to the number of zero flow months and 

perhaps this suggests that an additional constraint is required for the more arid 

basins where flow is not permanent. It would be worth exploring in future work 

the effects of changing the estimation equation for the FDC slope by using only 

time steps with flows greater than zero. One of the possible causes of low FDC 
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slopes in the ensembles is the excessive simulation of the low flows which could 

result from excessive groundwater recharge. This point is addressed in the next 

section. 

 

7.3.3 Ground water recharge constraint 

 

Figure 7.9 illustrates the comparisons between the three GRAII (DWAF, 2005) 

groundwater recharge estimates and the range (minimum and maximum) of the 

ensemble outputs. There are two quite clear conclusions that can be drawn from 

Figure 7.9. The first is that a high proportion (25 out of 46) of the minimum 

output ensembles are less than the lowest GRAII estimates of recharge and the 

second is that almost half (22 out of 46) of the maximum output ensembles are 

higher than the maximum GRAII estimates. There are 10 basins (including T35C, 

X31A, U20A, U20B, V60B and S60C) where the all the output ensembles are 

within the GRAII range and are therefore considered behavioural. The highest 

simulated annual ground water recharge values were 221.4 mm (X21C) and 

219.8 mm (T40A) and the lowest was zero for eight basins including Q92F, D55C 

and J33C. The latter group consists of basins that are all in the drier regions of 

the country. While zero recharge is not likely to be a behavioural result these will 

have little effect on the simulations because no ground water discharges are 

expected in such areas.  

 

One of the issues that the study had to take into account is the significance of the 

three recharge values in the GRAII database (DWAF, 2005). Firstly, the GRAII 

values are based on different methods and the extent to which these can 

represent uncertainty in the real recharge depends on the validity of the methods 

which is difficult to assess without more observed recharge data. Secondly, 

experience using the GRAII data suggests that the highest recharge values are 

not appropriate in many situations. Detailed analysis of model outputs in several 

sub-basins suggests that such high recharge values result in excessive low flows 

compared to observed streamflow data (Hughes and Parsons, 2005). However, in 

spite of the potential problems with the high recharge estimations from GRAII, 

they have been retained in this study as they can be considered to represent the 

extreme upper limit of recharge and are therefore useful to constrain the model 

outputs. One of the observations from Figure 7.9 is that, notwithstanding the 

recognized inadequacies in the estimation equation for the recharge parameter 

(see section7.3.4), the uncertainty is not large in almost all the basins. The 

exceptions are G10E, H10A, H10B, M10B, A92A, R20A and V20A.  
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Recharge Constraint
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Figure 7.9 Comparisons between the three GRAII recharge estimates 

and the minimum and maximum recharge output ensemble 

estimates.  

 

7.3.4 Calibrating parameter GW against the recharge constraint 

 

The results for the simulated recharge (Figure 7.9) suggest possible problems 

with the estimation procedure for parameter GW. In the initial stages of the 
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establishment and evaluation of the framework, the ground water recharge 

constraint was applied to the ensembles in order to remove all the values higher 

than the maximum and lower than the minimum recharge estimates given in the 

GRAII database (DWAF, 2005). While the effect was generally negligible in most 

basins, there were some basins where the number of outputs rejected was high 

(e.g. initial tests with H10C and G10E resulted in 1695 and 4594 out of 5000 

ensembles respectively being rejected). This initial evaluation revealed a number 

of problems with the recharge parameter estimation methods that resulted in 

excessive recharge values that were conceptually impossible and therefore 

resulted in excessive runoff volumes. An examination of the model structure 

revealed that in most of these cases, the model simulated more recharge output 

from the subsurface store than was available (a water balance error). This 

structural error was addressed by restricting the total value of the two subsurface 

moisture loss parameters (FT and GW) to be limited by the maximum subsurface 

moisture storage (ST). This change in the model resulted in much more realistic 

ranges of recharge estimates. The correction to the model code solves the water 

balance by rejecting excessive recharge values, but does not solve the problem of 

properly estimating the parameter GW. It is therefore imperative to not only 

correct the model code, but also to address this issue in the parameter estimation 

process and the parameter sampling procedure. This is an example of the 

feedback loop that was referred to during the presentation of the framework in 

Chapter 3. 

 

Efforts to improve the estimation for parameter GW were not entirely successful. 

One of the problems in the original approach was that the distribution was almost 

always log-Normal with quite large standard deviation values. This resulted in a 

small number of excessively high GW values. The improved estimation approach 

removed this problem but there remain many basins where the recharge 

estimates are substantially greater than the constraints (Figure 7.9.). The process 

that has been followed is to manually adjust (calibrate) the GW parameter PDF 

(mean and standard deviation) to achieve an uncertainty range of the annual 

recharge that is close to the constraint limits (Figure 7.9) suggested by the GRAII 

data. The results of this process are illustrated in Figures 7.10 and 7.11 and 

Appendix B shows the calibrated distributions of GW for the test basins.  The 

results of the overall simulations have improved and the uncertainty ranges for 

both the volume and FDC slope constraints are smaller and most outputs are 

behavioural. The reduction in the ranges resulted in most of the basins moving 

into category A, with low parameter uncertainty, though some basins continue to 
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have ensemble outputs outside the constraint boundaries. In such circumstances, 

there are other factors that may be important in determining the final model 

outputs such as scale and interpretation of land type data.  

 

This calibration approach showed that the parameter GW had a huge influence on 

the outcome of the modelling process and the final results are acceptable. One of 

the advantages of this approach is that it can be used to condition and constrain 

model simulations in both gauged and ungauged basins given that the calibration 

is against the constraint, rather than observed data. This approach means that 

refining the GW parameter estimation is not a priority as the GRAII data 

constraints can be used instead. In any case, calibrating the GW parameter to the 

GRAII constraints is necessary in only limited circumstances where the current 

estimation equation fails.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 The impact of changes made to reduce parameter 

uncertainty analysed through the variation in the range of 

mean monthly flows (Mm3).  
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Figure 7.11 The impact of various changes made to reduce parameter 

uncertainty analysed through the variation in the range of 

FDC slopes.  

 

7.4 Exploring the effects of scale on uncertainty 

 

Besides the apparent problem in the estimation equation of parameter GW in 

influencing uncertainty ranges, two other issues also raised in the preceding 

discussions are the interpretation of the physical basin data and the scale of 

model application and parameter estimation. These issues are closely related and 

can be resolved by the same modification to the parameter estimation approach. 

It was highlighted that the issue of subjectivity in the interpretation of basin data 

is usually encountered when there is large variability in the data as a result of the 

occurrence of several land types and/or soil types within a sub-basin. In the 

current application of the model and parameter estimation process, these effects 

are lumped at the sub-basin scale to define distributions for the relevant basin 

physical properties. This section analyses the impacts of unbundling the physical 

properties estimation process using a smaller scale of model application and 

parameter estimation. The first step was to assess the subdivisions that could 

possibly be used for this exercise. In South Africa, there is an existing subdivision 

of the quaternary basins (the sub-basins at which scale the model is used 
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currently) into smaller so-called quinaries (Schulze et al., 2007). However, while 

this approach results in smaller basins, these subdivisions do not, in most cases, 

coincide with the land type boundaries and using them would not have solved the 

problem. As a result, the subdivision of quaternary sub-basins was based on the 

interpretation of the land type data. This approach effectively groups areas 

dependent on their physical characteristics e.g. the higher, steeper, headwater 

areas with shallower soils were separated from lower, flatter areas with deeper 

soils. A nodal approach was adopted to investigate the scale effects. However, 

care had to be taken to realistically represent the variation of land type data 

without creating an excessive number of nodes. This approach achieves the 

objective of reducing subjectivity in the interpretation of the physical data and 

consequently, uncertainty in the estimation of the basin properties. Figure 7.12 

and Figure 7.13 illustrate the variability of land type data in the Breede sub-

basins (H10A-C) and the sub-basin (K40B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12 Illustration of the land type variation in sub-basins H10A-C. 

The nodes used are labeled and the arrows show the 

direction of flow. 
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Figure 7.13 Illustration of the land type variation in the sub-basins 

(K40A-B) of Diep and Hoekraal River systems.  

 

For the Breede system, H10A was divided into three sub-basins (H10A_1 to 

H10A_3), to represent the three distinct topographic units in the sub-basins. 

H10A_1 represents the high rugged terrain of the scarp faced areas. This includes 

the steeper components of the land types Ib112, Fb128 and Fa212. These 

components make up most of the top and mid slopes with no bottom or valley 

slope aspects. H10A_3 represents the steep slopes, mostly also top, mid slopes 

and some bottom slopes, of the land types Fb131 and Bb123. H10A_2 represents 

the low lying, bottom slopes and the valley and is dominated by the land type 

Fb132. For H10A, the arrangement is such that H10A_1 and H10A_3 would flow 

into the bottom subdivision, H10A_2. A similar approach was used to subdivide 

H10B and H10C into two sub-systems each, with the same notation as used for 

H10A. The outlets of the subdivisions for these sub-basins were at H10B_2 and 

H10C_2 respectively. H10A_2 and H10B_2 flow into H10C_2. What also needs to 

be noted is that the subdivisions also require a conceptualisation and 

interpretation of the recharge estimation based on the understanding that the 

steeper areas would be the recharge zones and the low lying areas the discharge 

zones. The GW parameter is adjusted to reflect this conceptualisation and 

understanding. The same understanding needs also to be extended to the 

parameters related to the drainage density (DDENS), riparian strip factor (RSF) 



 180

and the regional ground water slope (GWSlope) and these will also be affected by 

the new setups. While, this may be important from a physical hydrology 

conceptualisation perspective (to maintain hydrological integrity), the results are 

not sensitive to changes in these parameter values.  

 

For the Diep and Hoekraal River systems, K40A and K40B were divided into two 

and three sub-systems respectively. These subdivisions were based on the same 

reasoning as outlined for H10A-C in the previous paragraph. K40A_1 was 

designed to cover the higher topography represented by the land type Ib142, 

while K40A_2 represented the low lying area of the basin, marked by land types 

Gb2 and Db33. K40B_1 represented the higher topography (and land type 

Ib142), K40B_2 represented the middle level topography for this basin (land type 

Gb2) and K40B_3 represented the low lying, valley bottom topography (land 

types Db33, Fa39 and Ga3).  

 

This approach to parameter estimation and model application managed to capture 

most of the variability in the parameters and reduced subjectivity in the 

interpretation of the basin physical data. The distributions of the parameters 

estimated for the subdivisions are given in Appendix C. The resultant simulations, 

using these parameters were improved over the simulations where parameter 

estimation was lumped within a given sub-basin. There was generally a 

substantial change in the ranges of variation (i.e. uncertainty) of the mean 

monthly flow (Q) and the mean gradient of the monthly FDC as presented in 

Figure 7.10 and Figure 7.11. Considered together with the effects of calibrating 

parameter GW, there is generally a progressive improvement in the model output 

ranges except for H10A in Figure 7.11 and Figure 7.14. The scale effects did not 

lead to an improvement in the range of variability of the slope of the FDC. There 

was also a shift of the FDC slope range from scenario D to A but with an overall 

increase in the range. It is concluded that scale significantly affects the model 

parameterisation and needs to be taken into account if predictive uncertainty is to 

be reduced. It is also likely that in ungauged basins the effects of scale can be 

overlooked given the absence of a control. Reducing the scale of modelling 

application therefore should improve the quality of predictions in ungauged 

basins.  
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Figure 7.14 Changes in the ensemble Q/P ranges for the Region 5 as a 

result of the calibration of GW and the incorporation of scale 

effects. 

 

7.5 Parameter sensitivity analysis of the ensembles 

 

In the application of the constraints methodology, the idea is to assess behaviour 

of the model consequent on the variability in parameters, through indices of 

expected catchment functional behaviour. However, this behaviour is a sum of 

the effects of all the parameters and, as highlighted in Chapter 6, comparisons 

with the constraints tells us very little about the behaviour of individual 

parameters and the sensitivity of the model predictions to the individual 

parameters. In many cases it simply points to the basins where there are 

problems. It is therefore necessary to investigate and determine the effects of the 

individual parameters. In this study this is critical for the interrogation of the 

estimation equations and the determination of which parameters are important 

for which basins. This is invaluable for learning from the model, testing our 

understanding of process representations within the model and investigating both 

conceptual and structural consistency in the model. If conceptual expectations are 

at variance with the model outputs, it may be necessary to revisit both of them 

for a possible explanation. At times it is possible to increase parsimony in a model 

structure by simply assigning fixed values to the insensitive parameters. This 
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section outlines the results of this assessment. As pointed out in Chapter 6 both 

objective functions and flow metrics can be used to assess the parameter 

sensitivity. The objective functions are normally calculated from comparisons with 

observed data; however, in ungauged basins a time series representing 

conventional wisdom (e.g. WR90/2005 simulated flows) could also be used. An 

example of the summary of the sensitivity analysis based on all the different 

criteria available in this study is given in Table 7.4. The table shows the impact of 

different parameters on the different assessment criteria and gives insight into 

the most critical parameters and, therefore, the hydrologic processes likely to 

dominate in different sub-basins. Three arbitrary categories are defined for 

sensitivity defined by the degree of divergence of the normalised cumulative 

marginal probability curves of the parameters based on different assessment 

criteria. The categories range from highly sensitive, with the greatest divergence 

indicating the most sensitive parameter, through sensitive indicating moderate 

divergence, to insensitive with the least or no divergence. For instance, the 

parameter GW, as would be expected given the structure of the model, is a 

critical influence on the recharge flow metric and the objective functions which 

place an emphasis on the medium to low flows (i.e. TCE and TMMRE). It also 

seems that the parameters GW and FT are critical parameters for the sub-basins 

V70D and R20C, while POW and PI are critical for the sub-basin X31A and ZMIN 

and ZMAX are critical for C12D. One could therefore be persuaded to accept that 

subsurface runoff processes are important for the first two groups whereas 

surface processes are dominant in the last case. In a way, this is what one would 

naturally expect given that the first groups are wetter and more vegetated, while 

the latter is semi-arid. The analyses for the ungauged basins are based entirely 

on the constraints and similar conclusions can be made. In general the 

parameters are more identifiable when the cumulative frequency curves are 

distinctly separated from each other (e.g. Figure 7.15). If the frequency curves 

for the different groups cross each other the parameters are not identifiable. 
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Table 7.4 Summary of sensitivity analysis results for basins V70D, C12D and 

X31A. Black indicates a critical (highly sensitive) parameter, grey is 

important (sensitive) and white is negligible (insensitive). 

 

Basin  Flow metric  Objective function 

 Parameter MMQ MMRch FDC slope  CE TCE CE(Inv) MMRE TMMRE 

V70D PI1         

 PI2         

 ZMIN         

 ZMAX         

 ST         

 POW         

 FT         

 GW         

 T         

 S         

C12D PI1         

 PI2         

 ZMIN         

 ZMAX         

 ST         

 POW         

 FT         

 GW         

 T         

 S         

X31A PI1         

 PI2         

 ZMIN         

 ZMAX         

 ST         

 POW         

 FT         

 GW         

 T         

 S         

R20C PI1         

 PI2         

 ZMIN         

 ZMAX         

 ST         

 POW         

 FT         

 GW         

 T         
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Notes:   
• MMQ refers to the mean monthly discharge 

• MMRch refers to mean monthly recharge 

• CE is the Nash Coefficient of Efficiency for the untransformed values, which TCE 

refers to the CE based on natural log transformed values. CE_Inv is the CE of the 

inverse values. 

• MMRE is the % difference between the mean monthly flows of the untransformed 

simulated and observed data. TMMRE is the MMRE of the natural log transformed 

data. 

 

7.5.1 Parameter sensitivity based on objective functions 

 

For the gauged basins, it was possible to investigate parameter sensitivity based 

on any of the five objective functions (section 6.3). Figure 7.15 shows the results 

of the regional sensitivity analysis based on the Nash coefficient of efficiency (CE) 

objective function for the sub-basin of the Mooi River (T35C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.15 Parameter sensitivity analysis of the Mooi River sub-basin 

(T35C) 
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From the diagram it is easy to identify that the most critical parameters for this 

basin are ST and ZMIN. The highest divergence between the normalised 

cumulative frequency curves is for ST. From the diagram it can be observed that 

ZMIN, ZMAX and ST all tend to lower values for better CE values. However, the 

opposite is clearly true with parameters FT and GW which tend towards higher 

values for better CE values. Figure 7.4 confirms that the parameter estimation 

has resulted in somewhat lower than ideal values for these main runoff 

parameters. The sensitivity and identifiability of parameters may also be analysed 

and shown on scatter graphs. Figure 7.16 shows the scatter graph of the ST 

parameter for T35C and the trend towards lower values of the parameter for 

better CE values. The transmissivity (T) and PI parameters are not very sensitive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16 Scatter plot of the parameter ST for sub-basin T35C  

 

Figure 7.17 is an illustration of the parameter sensitivity analysis based on the 

transformed CE (TCE) objective function for  a sub-basin of the Berg River system 

(G10E) and shows that only parameters GW and T are sensitive with T tending 

towards higher values (above 12 m2/day), while GW tends towards lower values 

(below 20 mm), for improved TCE values. All the other parameters are 

insensitive. 
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Figure 7.18 illustrates sensitivity analysis based on MMRE for a sub-basin of the 

Gouritz River system (J33D). GW, FT and ST are the more sensitive parameters 

and for improved performance GW and FT require higher values (higher than 

about 15 mm/month in both cases), whereas ST tends to the lower values (about 

100 mm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17 Sensitivity analysis based on TCE for a sub-basin of the Berg 

River system (G10E). 
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Figure 7.18 Sensitivity analysis based on MMRE for J33D, a sub-basin of 

the Gouritz River system. 

 

7.5.2 Parameter sensitivity based on flow metrics 

 

This sensitivity analysis works for both the gauged and the ungauged basins. 

Given the objectives of this study, this is especially important. Any of the five flow 

metrics calculated as an output part of .un1 text files can be used as an 

assessment criterion for parameter sensitivity. This assessment can also include 

an identification and quantification of the non-behavioural members of the 

outputs ensembles (i.e. the number of outputs above or below constraint limits). 

The sensitivity analysis complements the more detailed interpretation of the 

output data files, usually undertaken in a spreadsheet program. If most of the 

outputs are rejected as non-behavioural, that suggests the existence of a problem 

that warrants investigation in the same manner as discussed in section 7.3.  

Figure 7.19 and Figure 7.20 illustrate regional sensitivity analyses for K40B (a 

sub-basin of the Hoekraal River system) and R20B (a sub-basin of the Buffalo 

River system) respectively. 
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Figure 7.19  Regional sensitivity analysis of the mean monthly flow 

metric for K40B before the GW parameter was calibrated. 

After the calibration all non-behavioural outputs were 

eliminated. 

 

While both have non-behavioural outputs, there are more for K40B (2108 out of 

10 000), all of which are below the lower limit of the constraint (scenario D), 

whereas R20B has fewer (878 outputs) all above the upper constraint limit 

(scenario A). The sources of these uncertainties are also different. In K40B, 

parameter FT accounts for the bulk of this uncertainty. GW accounts for some of 

this uncertainty, with all the other parameters being relatively insignificant. 

Despite the apparent importance of FT, after calibration of the GW parameter 

against GRAII recharge constraints all the non-behavioural results were removed. 

This illustrates the interrelationships between the two parameters that dominate 

the low flow regime (GW and FT). In R20B, the non-behavioural outputs are a 

result of the variability in parameter ZMAX, with only ZMIN, amongst all the other 

parameters, making some minor contribution.  
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Figure 7.20  Regional sensitivity analysis of the mean monthly flow 

metric for R20B. 

 

Figure 7.21 shows the results of regional sensitivity analyses of the constraints 

for the basin V70D. The parameters FT, ST, ZMIN and GW are the most sensitive 

based on the mean monthly flow signature, which is no surprise given an 

understanding of the structure of the model. There are a small number of non-

behavioural ensembles (68), all of which are above the constraint. These are not 

caused by any single parameter, but by combinations of low values of ZMIN, ST 

and POW, possibly combined with high values of FT and GW. This represents a 

typical result for a sub-humid catchment where non-behavioural ensembles are 

caused by inappropriate parameter combinations rather than inappropriate values 

for single parameters.   
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Figure 7.21 Regional sensitivity analysis of the mean monthly flow for 

the Little Boesmans River sub-basin (V70D)  

 

For purposes of illustrating the effect of different metrics, the same sub-basin was 

used. The analysis based on the recharge constraint confirmed the dominance of 

the parameter GW (Figure 7.22) and that there is a very clear distinction between 

the results for low parameter values versus high values. This suggests that the 

recharge constraint can be very useful in that is addresses uncertainty in only one 

component of the model, unlike the mean monthly flow constraint. However, its 

usefulness depends upon having good regional constraint data but unfortunately 

the information from the GRAII database contains too much uncertainty at 

present. 

 

Figure 7.23 illustrates that the simulated slope of the FDC in the V70D basin is 

strongly influenced by the low flows generated from ground water recharge and 

subsequent discharge. Most of this influence is related to parameter GW (as 

might be expected), but ST and ZMIN are also influencing the results.  
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Figure 7.22 Regional sensitivity analysis of the mean monthly recharge 

for the Little Boesmans River sub-basin (V70D)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.23 Regional sensitivity analysis of the slope of the monthly FDC 

for the Little Boesmans River sub-basin V70D. 



 192

It should be noted that while it is possible to interpret the sensitivity results 

based on objective functions for trends in parameters that give improved 

objective function values, the same cannot be done with flow metrics. The flow 

metrics can indicate which are the most identifiable parameters and do not 

provide any other information about which parameter sets give better results.   

 

7.6 Concluding remarks 

 

The proceeding results show that there is a lot of potential for the use of the 

uncertainty framework for South African basins. In a typically ungauged basin, 

the constraints can be used as a surrogate for observed data to ‘calibrate’ the 

model. The three constraints used in this study are robust enough to cover the 

range of geo-physical and hydro-climatic conditions in South Africa. It is also 

logical to assume that the same approach can be used (with minimum 

modification to account for differences in data availability and quality) in other 

basins within the southern Africa region. The incorporation of uncertainty into the 

regional application of the Pitman model has been achieved with generally 

acceptable results, although there is room for improvement. The following 

concluding remarks can be drawn from the results in this chapter: 

� The use of constraints can significantly condition predictions in both 

gauged and ungauged basins of South Africa. While this is so, it is 

unknown how the constraints developed for other basins outside South 

Africa will fare given the differences in data availability and quality. 

However, the use of hydrological constraints is a viable option in 

hydrological predictions and should be encouraged. 

� Constraints are an important surrogate for observed historical data and 

can be used for ‘calibrating’ models especially in ungauged basins. 

However, there are situations when all the outputs are behavioural but the 

ensemble ranges are too large. This may be a problem for model-based 

decision making. This implies that either the limits of acceptability based 

on the constraints would have to be reduced or that additional constraints 

need to be developed. It is not clear at this stage of the development of 

the framework which option is likely to be achievable given the available 

data.  

� There are two questions that are related to the previous point. Firstly, how 

many constraints are necessary or are needed? This is not easy to answer 

and to a large extent depends on the quantity and quality of data available 

to develop the constraints. It is prudent to note that it is pointless to 
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develop constraints that assess the same component/aspect of hydrology, 

a classic case of redundancy that usually occurs among scientists in the 

selection of hydrologic indices (Olden and Poff, 2003). It would be sensible 

to investigate and constrain as many components of the simulated flow 

regime as possible in the manner of multi-criteria calibration suggested by 

Boyle et al. (2003). The second, relatively easier, question pertains to the 

application of these constraints. What is the order of application of the 

developed constraints? This is important when more constraints are being 

used and it is possible to reject all outputs based on one constraint but 

accept them based on a different one. Also, the order of application may 

differ between and among users which may potentially lead to different 

results. There should therefore be a structured way of applying constraints 

so that consistent results can be obtained. It is also possible that the 

constraints to be used could depend on the type of basin under 

investigation as not all constraints would be useful. 

� While the constraints have worked fairly well, the ground water recharge 

constraint is not currently based on good enough data. It would be better 

to design the constraint based on a single method of determination of the 

control recharge values for consistency. 

� While most of the parameter estimation routines appear to have worked 

successfully to give reasonable uncertainty distributions, it is obvious that 

the routine for the ground water recharge parameter needs to be revisited 

in order to produce better estimates in all basins and avoid resorting to 

calibration.  

� The interpretation of the basins physical characteristics data and the  scale 

of model application and parameter estimation have been highlighted as 

having significant impacts on the level of uncertainty in the model outputs. 

However, there were a large number for which the use of a reduced scale 

did not improve simulations. It is therefore concluded that the appropriate 

scale of application should be decided from a consideration of the 

variability of the physical properties within any specific basin. 

 

The use of the constraints for guiding model application in both gauged and 

ungauged basins has advantages for use in regions such as southern Africa where 

data for model calibration are scarce.  However, there is need to establish the 

level of uncertainty related to the constraints themselves for purposes of quality 

control of the resulting acceptable behavioral outputs.  
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Some parameter equations and the approach to defining uncertainty bounds need 

to be revisited. The constraint diagrams and the regional sensitivity can be used 

to effectively identify areas where improvements are required (Figures 3.5 and 

6.10). Such feedback is essential for the further development of the parameter 

estimation procedures and the application of the framework. Currently, some of 

the constraints exhibit wide ranges that may be too large and result in ensemble 

ranges that are too large for effective use in system yield models. Such a large 

amount of uncertainty is expected to result in resource availability estimations 

that are too uncertain for effective decision making. Therefore, it is imperative 

that these ranges be narrowed and contribute to less uncertainty (and therefore 

risk) involved in basing decisions on model outputs.  
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Introduction 

 

This chapter aims to synthesize the main findings of this study, relate them to the 

stated aims and objectives, and outline some recommendations for further work. 

Water resources planning and management have for a long time been based on 

data generated by models, even in poorly gauged basins, and mathematical 

models have become a critical part of decision and/or policy making as 

hydrological systems have been increasingly affected by human demands. 

Contemporary applications of models in ungauged basins have been based on any 

one of the many techniques of regionalization. The Pitman model has enjoyed 

relatively widespread use in southern Africa, and for South Africa, regionalized 

model parameters have been developed based on mapping using somewhat 

subjective measures of similarity between and among basins. In the rest of the 

southern Africa region there are no regionalized parameter values available, but 

the same similarity techniques have been generally applied for ungauged basins. 

While the results have provided a basis for decision and/or policy making, it is 

generally acknowledged that they are not without uncertainty and rely to a large 

extent on model user experience. The uncertainty is a result of a number of 

issues including a high degree of temporal and spatial variability of hydro-climatic 

conditions, input data scarcity, parameter estimation methods, model structural 

inadequacies and poorly defined water use data and land use changes. In spite of 

this recognition of the existence of uncertainty there has been little effort to 

explicitly account for the uncertainties involved (Sawunyama, 2009). The 

dominance of model parameter uncertainty in the Pitman (Pitman, 1973) model is 

a result of the large number of parameter to be estimated, and the inability of 

typically used objective functions to determine these parameters. A model with 

fewer parameters would tend to have small uncertainty (greater precision) but 

generally at the cost of a reduction in representation of the catchment behaviour 

(reduction in accuracy).  

 

The PUB initiative has led to an increase in the awareness of the impacts of 

uncertainty on the predictions of hydrological variables and, more importantly, 

the need to directly account for and incorporate uncertainty into decision support 

tools. In considering uncertainty, three issues have to be addressed for any 
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improvement in water resources decision making and these are understanding, 

quantification and reduction of uncertainty. While the literature contains various 

approaches to the uncertainty problem, few address the last aspect in any detail 

(Ajami et al., 2007). From a practical point of view, there is little point addressing 

the issues surrounding uncertainty if there is no effort to reduce it. In a 

management context it is important that unambiguous guidance be provided 

when model results are uncertain. Of practical relevance to South Africa and 

southern Africa is the applicability of the myriad of approaches to uncertainty. 

Given the types of models used (and the conventional knowledge based on these 

models), the scarcity of historical observed data and the modelling culture of 

practitioners within the region, it is imperative that a common understanding and 

approach be developed for achieving the multiple water resources objectives of 

the region. Of the three major sources of uncertainty in hydrological modelling, 

this study has focused on parameter uncertainty. The main reason is that 

parameter uncertainty appears to contribute the most to predictive uncertainty in 

the outputs of the Pitman model as applied in southern Africa (Sawunyama, 

2009). The development of the uncertainty methods has been undertaken within 

the context of a model independent uncertainty framework that will eventually 

accommodate other sources of uncertainty.  

 

8.2 An uncertainty framework for model application  

 

This study represents a contribution towards the explicit incorporation of 

uncertainty in making hydrological predictions. A framework for the incorporation 

and estimation of uncertainty is suggested and tested for basins in South Africa. 

The main components of the framework relate to the estimation of parameters 

(section 8.3) and their probability distributions (section 8.5), indices of catchment 

functional behaviour (constraints, section 8.6), sensitivity analysis (section 8.7) 

and provision for a feedback loop. The estimated parameter priors are used to 

generate ensembles of model simulations which are then assessed using 

regionalized constraints. It is implicit in the framework that the constraints are 

based on the best available knowledge covering different regions. The 

components of the framework are considered robust enough to enable its use 

with any model structure. One of the main findings of this study is that the 

application of the framework with the Pitman model has demonstrated its merits. 

The framework is capable of being used in both gauged and ungauged basins. 

However, its successful use outside South Africa will depend on data availability 

and quality. This will necessitate some adjustments to the components to adapt 
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to these different conditions. It should be noted that the development of a 

framework was not a primary objective of the study, but emerged out of the 

development of the parameter estimation process. Due to the wide variation of 

data within South Africa and across the region it became apparent that there was 

a need for a consistent approach and this is achieved through the proposed 

framework.  

8.3 Parameter estimation procedures  

 

Most contemporary model applications in both gauged and ungauged basins have 

relied on the adjustment of parameters to match the simulated hydrograph to 

that of the uncertain observed record. For instance, there are uncertainties 

related to the extent to which the available observed flows represent the natural 

hydrology of the basins. Human influences on most rivers within the southern 

Africa region, in the form of small scale river (and off-river) storages (farm 

dams), return flows and run-of-river abstractions, are inadequately quantified. In 

this study the parameters of the Pitman model have been directly quantified from 

measurable basin physical attributes. Well known physical hydrology principles 

are used to infer relationships between the conceptual model parameters and the 

basin properties. This parameter estimation approach has managed to produce 

hydrologically relevant parameters that have resulted in largely acceptable results 

across the hydro-climatic and geo-physical conditions examined in this study. The 

parameters that were estimated in this study relate to all the natural processes 

simulated by the model and the a priori estimation approach has been successful 

and is robust. The relationships between the parameters and basin descriptors 

have adequately accounted for the variability in the basin property data. This has 

maintained the physical integrity of both the model and parameters. The standard 

estimation procedures give the mean value (‘best’ estimate) of a parameter 

based on the physical characteristics of the basin. The results of this study 

suggest that the model and the parameters are capable of adequately 

representing the basin natural hydrological processes. The model is adequately 

parameterized and those parameters do not represent the effects of multiple 

processes. However, the interactions between and among the parameters often 

make it difficult for the parameters to be identifiable (see section 8.7). The 

estimation procedure for the parameter GW has not worked quite as well as the 

others in some basins. There is no apparent hydro-climatic or physical bias in this 

failure and therefore there are no clear indications of how the estimation 

approach could be improved.  
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8.4 Basin physical property data for parameter estimation 

 

The success of application of the methods described here will depend to a large 

extent on the availability and quality of data to quantify the hydro-meteorological 

and geo-physical attributes of the catchment. The development of the estimation 

equations has been premised on the availability of data that are collected by 

many different departments within the region and these include soil hydraulic 

properties, soil texture type and depth, basin slope, relief, vegetation cover and 

geology. The availability of these data across the region is variable, neither are 

they easily accessible nor of the same level of detail nor quality. This was 

expected given the diversity of the region. The data available for South Africa is 

the most detailed (covers many of the required basin attributes), has the best 

spatial coverage (available at the national scale) and are of better quality (i.e. 

reasonably quantified basin attributes) compared to the other parts of the region. 

Notwithstanding some problems of detail in some places, the AGIS (2007) 

database available in South Africa has provided a reasonably solid foundation for 

development and testing of the parameter and uncertainty estimations. The 

ultimate goal is to transfer these estimations to other places in the region after 

learning from the South African experience. There will be need to assess the 

degree of variability in the basin property data with the intention of providing 

guidelines for the use of the methods to basins outside South Africa. In many 

cases the estimation process will not be easy and will involve subjective 

interpretation of hugely qualitative information (Kapangaziwiri, 2008), which will 

make the incorporation of uncertainty through the use of ranges of variability 

(see section 8.5) a big challenge.  

 

The implication is therefore that in places outside South Africa a standard will be 

needed to define appropriate mean values and/or limits or ranges for the 

qualitative data in order to increase objectivity and consistency. For instance, it is 

necessary for the estimation processes that attributes such as soil depth and 

slope angle have quantitative mean values or boundaries around such 

descriptions as ‘deep soil’ or ‘steep slope’ so that they mean the same throughout 

the region. The current situation outside South Africa implies that the uncertainty 

related to the nominal qualitative basin information will be very large, and the 

need to reduce it implies that more and better quality data would need to be 

collected. However, it was observed in this study that even data of relatively high 

resolution can also be in error. For instance, in the case of K40B in South Africa, 

the application of the model at a finer scale did not reduce the uncertainty. This is 
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thought to be associated with extrapolation from a limited sample of field data 

used to construct the land types. Personal knowledge of the area suggests a 

larger variability than is represented in the AGIS land type data. While there is no 

evidence available for similar problems in other parts of South Africa, it is not 

unreasonable to assume that they exist, given that only limited field observations 

were used. 

 

8.5 Incorporating uncertainty into parameter estimation 

methods 

 

The standard parameter estimation equations provide a single value for a given 

parameter in any chosen basin. Given the variability in the basin physical 

attributes data, this approach is not very informative and is quite uncertain. A 

simple example is that two basins may have the same (mean) value of 15% for, 

say, basin slope but with different variability characteristics. If basin A has a slope 

range of 13 to 18 and basin B has range 5 to 45, these basins will essentially be 

different in the way they impact the estimation process if their variabilities are 

taken into account. The estimated basin slope for A is far less uncertain than that 

for B. The uncertainty framework was therefore developed to be a consistent 

platform for the incorporation of uncertainty into the estimation process. To 

account for the uncertainty in the parameter estimation process, the ranges of 

variability of the basin attributes data were used to represent their frequency 

distribution characteristics. While many distributions are possible for natural 

phenomena (Munoz-Carpena et al., 2007), the distributions used in this study 

were based on the premise that some values are more likely to occur than others 

for both the physical basin property data and the parameters. Thus, Normal 

distributions (defined by a mean value and standard deviation) were used for the 

physical basin attributes and this appears to have worked well in all basins and 

has been justified by the results. The uncertainty estimation procedures allow the 

use of the Uniform distribution where information on the physical basin attributes 

is inadequate or where no estimation equation exists for a given parameter. 

However, this requires that appropriate boundary values be set to define the 

feasible parameter space. Simulation results based on the normally (or log-

Normal in cases of large skewness in secondary inputs and/or resultant 

parameters due mainly to estimation of largely non-linear process) have been 

largely within expected ranges. In general, the model output ensembles 

generated by the parameter distributions have reasonable ranges of uncertainty 

but further work is required to ensure greater consistency in the results. In cases 
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where the parameter distributions resulted in ensemble ranges that were quite 

large, many had appropriate (behavioural) mean values. This suggests that the 

focus of future work should be on the standard deviation estimates of the 

parameter distributions.  

 

8.6 Use of constraints in assessing output uncertainty 

 

Three indices of hydrological response behaviour were developed and tested as 

constraints, and the study showed that the regions and the regional relationships 

established were hydrologically sensible and in general agreement with existing 

knowledge. The use of the constraints to condition model simulations provides a 

multi-criteria calibration and the tests of the current group in this regard suggests 

that more indices may need to be developed to constrain more components of 

simulated flow. The preliminary set of constraints developed for this study relate 

to the overall water balance component (volume constraint, runoff ratio), the 

variability of the flow regime (slope of the FDC) and ground water recharge. It 

should be noted however that the development of constraints is heavily reliant on 

the availability and quality of data. In this study, simulated flows had to be used 

in the initial development of some of the constraints due to the inadequacy of the 

observed data. However, the use of these data (affected by modelling artefacts) 

did not adversely affect the constraints. They were used for the initial 

development of the constraints before observed data were used to finalise the 

relationships. Therefore, constraints are also subject to uncertainty and in this 

study uncertainty bands were developed around the regional constraint 

relationships. These bands therefore determined the limits of acceptability when 

the model output ensembles were compared with the constraints. The basis of 

this approach was that the uncertainty related to the constraints was initially 

assumed to be less than that related to the parameters. In that case the 

constraints can therefore be used to reduce predictive uncertainty. Comparing the 

model output ensembles with the regionalized constraint relationships gives four 

possible categories of uncertainty, ranging from low uncertainty, through bias 

towards either the low or high flows to large uncertainty. The constraints have 

worked well in many of the basins and the results are encouraging. However, the 

groundwater recharge constraint may need revisiting at a later date. This 

constraint is based on data from three different methods whose uncertainties 

have not been determined. It would be more logical to base the constraint of a 

data set based on one method only. Notwithstanding this, the groundwater 

recharge constraint resulted in many behavioural outputs with low levels of 
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uncertainty. What is difficult to determine at the moment is the extent to which 

this is a result of the large boundaries determined by the data used. The FDC 

slope has been applied at the national scale as a result of difficulties in 

regionalizing the constraint. This has resulted in wide bands for the constraint, 

which was expected given the wide variability of hydro-climatic and geo-physical 

conditions within the country. The model ensembles generally resulted in FDC 

slopes that were biased toward the lower boundary of the constraint range. 

 

One of the issues that arise with the application of a number of constraints is the 

need for an application procedure that clearly outlines the order of application of 

the constraints, i.e. which constraint is applied first. In this case, the fact that the 

use of the groundwater constraint necessitates re-calibration makes this 

consideration important. However, in the absence of such problems the definition 

of an order of application of the constraints is not required. In fact, it is possible 

and even desirable to handle the constraints simultaneously as in multi-criteria 

(or Pareto optimization) analysis. The other issue relates to the number of 

constraints necessary for a region like southern Africa. While it is sensible to 

develop as many constraints as possible, it is also prudent to guard against 

redundancy where constraints examine the same components. It was 

demonstrated in this study that constraints can be used effectively to guide model 

application where historical observed flows are not available. 

 

8.7 Sensitivity analysis and the feedback loop 

 

An important aspect of the framework is the inclusion of a sensitivity analysis that 

can be used to gauge the impact of individual parameters on the simulated flow. 

The use of the sensitivity analysis enables an examination of the identifiability of 

the parameters. In the Pitman model, the identifiability of parameters is usually a 

problem due to the number of parameters and the interactions between them. 

This analysis managed to show the differences in the process dominance of the 

different basins. The semi-arid, surface runoff dominated sub-basins (e.g. C12D, 

D55C and A42D) showed that the infiltration parameters (ZMIN and ZMAX) were 

critical, while for the baseflow driven catchments (e.g. X31A, V70D and V20A) the 

critical parameters were generally FT and GW. Generally, the results were 

consistent with expectations from an understanding of the physical hydrology of 

the basins tested. The results of this study support the suggestion that the 

identifiability of a parameter is related to its importance in representing the 

basin’s response (McIntyre et al., 2005). 
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The sensitivity analysis is a vital step of the feedback loop of the uncertainty 

framework. While the constraints identify the basins where the application of the 

parameter estimation process has failed to work properly, this is not informative 

enough for the estimation process if remedial action is to be taken. Sensitivity 

analysis identifies the parameters with the greatest variability and that influence 

the model results the most. This then informs the reassessment of the estimation 

approach for these parameters. Such problems related to the scale of model 

application, degree of variability, and interpretation, of the basin physical 

properties information are clearer to deal with when the parameters that are most 

affected can be identified.  

 

8.8 Recommendations and general remarks  

 

Based on the outcomes of this study, the following recommendations are 

suggested: 

� While the framework for incorporating uncertainty designed for southern 

African conditions has shown great potential, there exists scope to further 

refine some of the regional relationships, and the recommendation is to 

build on this framework. In spite of the fact that some of the components 

of the framework are not perfect, its use is expected to contribute to more 

consistent results and provide a basis for comparison of results from 

different models and different model users. It also provides an approach 

for regional application of models in ungauged basins. 

� Uncertainty estimation should become an integral part of water resources 

management within the region. 

� Despite the fact that the calibration of the GW parameter based on the 

GRAII data seems to have provided a solution to the simulation of the 

recharge component of the model, it is still necessary to develop a better 

estimation equation.  

� More constraints need to be explored in order to constrain as many 

components of simulated flow as possible. Where insufficient data exist, as 

is likely to be the case in some places within the region, the same 

constraints can be used but with larger uncertainty, represented by wide 

bands. 

� The optimization of the model outputs based on the constraints (i.e. a 

multi-objective assessment using the constraints as objective functions) 

should be investigated for use in ungauged basins. This could contribute to 

the optimization of parameter sets that are within the behavioural output 
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space. Instead of generating a single optimum solution, an optimum 

ensemble of model outputs. 

� The methods need to be tested in some basins outside South Africa to 

provide a clearer idea of the issues involved and the expected problems 

and how they can be solved.   

� While the uncertainty analysis for adequately gauged basins is 

straightforward, the possible conjunctive use of short or incomplete records 

and highly uncertain constraints needs to be explored in the future. As this 

study draws to an end, it is becoming clear that in some parts of the region 

all the available information should be used to improve water resources 

management. 

� While the subjectivity in the estimation process can be reduced by applying 

the model at a finer resolution, this approach may be difficult outside 

South Africa. It is therefore necessary to investigate how uncertainty would 

be reduced in such situations. One way is to increase the collection of more 

and better quality data.   

� Explore the use of other sources of information to develop estimation of 

both the parameters and the constraints.  

 

As the demand for water resources of southern Africa increases (in terms of both 

the quantity and quality) there is need to adequately take stock of the available 

resources. While it may be impossible to be absolutely certain about the stocks 

available, quantifying the uncertainties related to the estimation process would 

increase confidence in the scientific determination of stocks. Most of this 

determination is based on model simulations but the accuracy of the results is 

unknown. Uncertainty analysis should allow us to express our confidence in the 

model results.  Failure to account for the estimation uncertainties could lead to 

unjustified confidence in hydrological and water resource estimations and 

predictions. It could also lead to a lack of appreciation of the risks associated with 

decision making in uncertain situations, and suppresses the incentive to improve 

data collection frequency and techniques, parameter estimation methods and 

model structures. The inclusion of uncertainty in water resources estimation tools, 

however, entails rethinking the way models are applied and how results should be 

interpreted and communicated to stakeholders. The framework discussed in this 

study is an attempt to achieve consistency in the way uncertainty can be 

incorporated and analysed within water resources estimation tools. 
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This study concentrated on the incorporation and analysis of parameter 

uncertainty into the Pitman model through a model independent framework. It is 

acknowledged that many other sources of uncertainty may impact on predictions 

in ungauged basins, but this framework allows for the incorporation of these in 

the future. It is not enough to only design elegant frameworks and tools but to be 

able to effectively communicate the results of these methods to stakeholders such 

that informed decisions can be made. Incorporating uncertainty in hydrological 

models improves the ability of the modelling community to meet the 

requirements for decision making by providing a sufficiently broad spectrum of 

possibilities that enable the assessment, quantification and incorporation of risk 

into the policy and/or decision making process. The dictum to be followed here is 

that the reliability of the decisions would increase if the uncertainty bands are 

wide enough to be credible but narrow enough to be useful. Uncertainty should 

increase the confidence in model predictions of future change rather than relying 

on a model that has only been shown to reproduce historical conditions at the site 

of interest. In the context of South Africa, the incorporation of uncertainty into 

the generation of natural hydrology should be followed by a discussion on how 

these results can be used further in water resources systems models to generate 

uncertain present day and future scenarios. It is intended that the use of the 

framework will galvanise the collection of more relevant data and use of other 

data sources such as remote sensing. However, Hughes and Kapangaziwiri (2009) 

contend that there are still some pertinent scientific questions to be answered 

such as “how much of the uncertainty that we are modelling is real uncertainty or 

do we know more about hydrological responses at ungauged sites than the 

current results suggest?”  

 

Finally, it seems that there is still some uncertainty about uncertainty.  
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APPENDICES 
 

 
Appendix A. Physical descriptions of the test basins used in this study. 

 
 

 
Sub-basin Gauge Physical description 

A42A Ungauged 

A42B Ungauged 

A42C Ungauged 

A42D A4H008 

A42E Ungauged 

A42F Ungauged 

Undulating to steep topography, moderate to deep sandy 
loams; fractured sedimentary strata. 

  

  
  

  
  

A92A A9H004 Undulating topography, moderate to deep sandy loams; 

sedimentary rocks with intrusive dykes and sills 

B41G B4H009 Undulating to steep topography, moderate to deep sandy 

loams; ultra metamorphics  

C12D C2H004 Undulating topography, moderate to deep clayey soils, inter-

bedded shales and sandstones 

D55C Ungauged Undulating topography, shallow sandy loams; inter-bedded 

mudstones, shales and sandstones. 

G10E G1H008 Steep topography, moderately deep, porous sandy loams 
with some impermeable lenses; unconsolidated sedimentary 

strata.  

H10A Ungauged 

H10B Ungauged 

H10C H1H003 

Steep, moderately deep sandy loams; Karoo shales and 

sandstones. 

J33C Ungauged 

J33D Ungauged 

steep topography, shallow sandy loams; fractured 

mudstones, shales and sandstones 

  

K40A K4H003 

K40B K4H001 

Steep topography, shallow to moderate loamy sands; 
fractured granite.  Present day impacts of plantations. 

  

M10B Ungauged Steep topography, shallow, sandy loams; inter-bedded 

mudstones, shales and sandstones. 

N24A Ungauged Undulating topography, moderate to deep, sandy loams; 

inter-bedded mudstones, shales and sandstones. 

Q14A Ungauged Undulating topography, moderate to deep, sandy loams; 
inter-bedded mudstones, shales and sandstones. 

  

Q92F Ungauged Undulating topography, moderate to deep, sandy loams; 

inter-bedded mudstones, shales and sandstones. 

R20A Ungauged 

R20B Ungauged 

R20C R2H006 

R20D ungauged 

Undulating topography, moderate to deep sandy loams; 

inter-bedded mudstones, shales and sandstones. 

S60C S6H003 Undulating topography, moderate to deep, sandy loams; 

fractured granites. 

T35C T3H009 Steep topography, moderate to deep, clayey loams; fractured 

granites.  

T40A Ungauged 

T40B Ungauged 

T40C T4H001 

Undulating topography, moderate to deep sandy loams; 

fractured sedimentary strata.  
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Sub-basin Gauge Physical description 

U20A Ungauged 

U20B U2H007 

U20C Ungauged 

Undulating topography, moderate to deep clays; fractured 

sedimentary strata. 

V20A V2H005 Undulating to steep topography, moderate to deep clayey 
loams; Karoo shales, sandstones, grit and coal. 

V60A V6H006 

V60B V6H004 

 Undulating topography, moderate to deep clay to clay 

loams; mainly inter-bedded mudstones, shales and 

sandstones with fractured sedimentary strata. 
  

V70D V7H012 Steep topography, moderate to deep, clayey soils; inter-
bedded mudstones, shales and sandstones. 

X11A Ungauged 

X11B Ungauged 

X11C Ungauged 

 Undulating topography, moderate to deep sandy clay loams; 

inter-bedded mudstones, shales and sandstones. 
  
  

X21A Ungauged 

X21B Ungauged 

X21C Ungauged 

Undulating to steep topography, moderate to deep sandy clay 
loams; porous sedimentary strata. 

  
  

X31A X3H001 Steep topography, moderately deep sandy clay loams; 

dolomites and limestone. 

 
 

 

 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 



 228

Appendix B: Parameter distributions (mean µ and standard deviation σ) for 

some basins before and after GW calibration. GW1 and GW2 refer 

to the parameter distribution before and after calibration 

respectively. 

 

Basins A92A C12D G10E 

parameters µ σ µ σ µ σ 

PI1 2.132 0.000 0.480 0.034 1.155 0.106 

PI2 2.873 0.017 2.964 0.018 2.760 0.017 

ZMIN 44.250 22.012 15.095 1.467 48.750 23.488 

ZAVE 194.197 0.000 256.936 0.000 169.374 0.000 

ZMAX 926.200 35.697 671.800 38.043 1131.400 57.367 

ST 211.692 27.058 134.265 21.299 118.835 15.188 

POW 1.990 0.040 2.900 0.550 2.000 0.000 

FT 9.825 3.571 0.637 0.123 10.737 2.577 

GW1 55.932 4.593 34.697 10.368 61.530 12.560 

GW2 60.000 3.500 23.000 5.500 15.000 2.500 

T 4.000 0.800 40.000 8.000 20.000 4.000 

S   0.005 0.001 0.005 0.001 0.003 0.000 

 

Basins H10A H10B H10C 

parameters µ σ µ σ µ σ 

PI1 0.348 0.022 0.357 0.022 0.601 0.067 

PI2 2.796 0.017 2.882 0.018 2.348 0.013 

ZMIN 65.000 0.000 80.000 0.000 93.600 7.110 

ZAVE 269.384 0.000 247.970 0.000 774.178 0.000 

ZMAX 1132.000 31.398 1199.800 2.000 999.600 38.136 

ST 160.743 16.129 182.565 16.674 166.492 23.261 

POW 2.000 0.000 2.000 0.000 1.930 0.100 

FT 19.895 3.896 19.068 3.802 36.554 17.428 

GW1 35.394 9.195 59.547 6.995 29.112 5.175 

GW2 13.500 2.250 22.500 2.250 15.000 2.000 

T 42.400 4.240 40.000 4.000 50.000 10.000 

S   0.001 0.001 0.001 0.001 0.001 0.001 

Basins M10B V20A X21A 

parameters µ σ µ σ µ σ 

PI1 1.003 0.093 1.296 0.113 0.739 0.033 

PI2 2.388 0.015 3.099 0.019 3.189 0.019 

ZMIN 45.000 0.000 55.550 17.479 22.974 1.318 

ZAVE 83.750 0.000 1143.060 0.000 338.742 0.000 

ZMAX 820.000 0.000 1200.000 0.000 593.600 50.282 

ST 115.765 9.435 276.565 41.145 168.266 28.558 

POW 1.970 0.070 2.000 0.000 2.650 0.220 

FT 10.234 3.200 102.341 23.013 0.654 0.271 

GW1 41.193 11.926 59.477 6.929 42.327 6.284 

GW2 17.500 3.750 48.500 3.250 30.500 4.250 

T 20.000 4.000 120.000 20.000 11.840 4.000 

S   0.001 0.000 0.004 0.000 0.001 0.001 
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Basins R20A R20B R20C R20D 

parameters µ σ µ σ µ σ µ σ 

PI1 2.030 0.017 0.445 0.031 1.308 0.116 0.474 0.034 

PI2 2.752 0.016 2.740 0.017 3.105 0.019 2.919 0.018 

ZMIN 56.700 28.676 22.950 20.623 23.850 11.846 25.950 24.034 

ZAVE 388.736 0.000 322.059 0.000 252.340 0.000 148.828 0.000 

ZMAX 1188.000 20.695 610.800 138.897 1165.600 35.514 1016.400 189.233 

ST 172.304 29.676 180.478 31.152 174.707 27.031 168.246 27.074 

POW 2.000 0.000 2.720 0.330 2.000 0.000 2.000 0.000 

FT 19.815 3.633 0.734 0.318 12.746 3.009 9.994 2.320 

GW1 39.608 6.903 22.871 6.273 26.711 6.596 16.984 5.729 

GW2 25.000 3.500 16.000 3.500 18.250 3.500 13.000 3.500 

T 29.280 4.000 24.136 4.000 20.000 4.000 20.360 4.000 

S   0.003 0.000 0.004 0.000 0.003 0.000 0.004 0.000 
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Appendix C: Parameter distributions (mean µ and standard deviation σ) for 

basins before and after consideration of the scale of model 

application. The tables show estimated parameters for both the 

lumped and nodal model applications. 

 

 C12D  C12D_1  C12D_2  

 µ σ µ σ µ σ 

PI1 0.480 0.034 0.479 0.034 0.480 0.035 

PI2 2.964 0.018 2.964 0.018 2.964 0.018 

ZMIN 15.095 1.467 40.150 5.480 62.700 24.827 

ZAVE 256.936 0.000 314.133 0.000 606.615 0.000 

ZMAX 671.800 38.043 682.400 116.038 934.600 133.208 

ST 134.265 21.299 177.314 30.935 148.674 27.574 

POW 2.900 0.550 2.810 0.420 3.270 0.970 

FT 0.637 0.123 0.671 0.197 0.249 0.133 

GW 23.000 5.500 20.000 3.500 18.000 3.500 

T 40.000 8.000 28.000 2.800 40.000 8.000 

S   0.005 0.001 0.005 0.001 0.005 0.001 

 

 K40A  K40A_1  K40A_2  

 µ σ µ σ µ σ 

PI1 1.964 0.017 1.964 0.017 1.963 0.018 

PI2 2.569 0.028 2.571 0.029 2.571 0.029 

ZMIN 5.070 1.103 50.000 0.000 71.550 19.025 

ZAVE 236.261 0.000 140.258 0.000 328.388 0.000 

ZMAX 1160.787 1.005 985.210 1.020 1172.400 26.481 

ST 96.751 1.925 137.190 15.898 267.103 39.216 

POW 1.980 0.060 2.000 0.000 2.000 0.000 

FT 44.156 1.859 11.782 2.808 15.141 2.822 

GW 16.330 2.805 30.000 5.000 20.000 3.200 

T 40.000 8.000 8.000 0.800 20.000 2.000 

S   0.002 0.001 0.002 0.000 0.004 0.000 

 

 K40B  K40B_1  K40B_2  

 µ σ µ σ µ σ 

PI1 1.963 0.017 1.964 0.017 1.964 0.017 

PI2 2.571 0.029 2.572 0.030 2.571 0.029 

ZMIN 64.200 4.003 63.150 9.472 54.800 19.383 

ZAVE 275.975 0.000 178.004 0.000 228.514 0.000 

ZMAX 1155.600 20.613 1194.000 11.547 1168.400 58.478 

ST 214.960 24.398 182.277 18.689 230.476 28.739 

POW 2.000 0.010 2.000 0.010 2.000 0.000 

FT 17.694 5.795 15.660 4.026 14.910 4.132 

GW 38.322 4.995 40.000 5.500 30.000 4.500 

T 20.000 4.000 20.000 4.000 20.000 4.000 

S   0.003 0.000 0.003 0.000 0.003 0.000 
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 H10A  H10A_1  H10A_2  H10A_3  

 µ σ µ σ µ σ µ σ 

PI1 0.348 0.022 0.209 0.000 1.119 0.142 0.712 0.096 

PI2 2.796 0.017 2.066 0.011 2.772 0.015 2.774 0.016 

ZMIN 65.000 0.000 45.000 0.000 60.850 10.102 37.250 10.763 

ZAVE 269.384 0.000 82.750 0.000 252.145 0.000 122.420 0.000 

ZMAX 1132.000 31.398 800.000 0.000 884.600 25.719 726.000 13.181 

ST 160.743 16.129 109.719 18.261 206.755 34.761 141.186 21.763 

POW 2.000 0.000 2.000 0.000 2.070 0.250 2.000 0.000 

FT 19.895 3.896 7.875 1.380 5.042 2.198 6.008 1.192 

GW 13.500 2.250 29.000 5.000 2.000 0.600 15.000 3.000 

T 42.400 4.240 50.000 10.000 50.000 10.000 50.000 10.000 

S   0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 

 

 H10B  H10B_1  H10B_2  

 µ σ µ σ µ σ 

PI1 0.357 0.022 0.209 0.010 1.134 0.146 

PI2 2.882 0.018 2.065 0.011 2.774 0.014 

ZMIN 80.000 0.000 65.000 0.000 60.200 26.826 

ZAVE 247.970 0.000 348.750 0.000 731.369 0.000 

ZMAX 1199.800 2.000 1200.000 0.000 1075.600 93.315 

ST 182.565 16.674 165.495 16.259 275.092 55.250 

POW 2.000 0.000 1.990 0.030 1.930 0.280 

FT 19.068 3.802 24.097 4.839 13.859 7.888 

GW 22.500 2.250 32.000 5.000 2.000 0.600 

T 40.000 4.000 50.000 10.000 50.000 10.000 

S   0.001 0.001 0.001 0.000 0.001 0.000 

 

 H10C  H10C_1  H10C_2  

 µ σ µ σ µ σ 

PI1 0.601 0.067 0.210 0.010 1.124 0.145 

PI2 2.348 0.013 2.065 0.012 2.773 0.015 

ZMIN 93.600 7.110 65.000 0.000 53.700 19.038 

ZAVE 774.178 0.000 292.000 0.000 367.907 0.000 

ZMAX 999.600 38.136 1200.000 0.000 1179.200 26.196 

ST 166.492 23.261 175.690 17.028 217.111 41.359 

POW 1.930 0.100 2.000 0.030 2.460 0.270 

FT 36.554 17.428 21.803 7.014 2.408 0.673 

GW 15.000 2.000 25.000 4.500 2.700 0.600 

T 50.000 10.000 50.000 10.000 50.000 10.000 

S   0.001 0.001 0.001 0.000 0.001 0.000 
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 R20C  R20C_1  R20C_2  R20C_3  

 µ σ µ σ µ σ µ σ 

PI1 1.308 0.116 1.299 0.114 1.231 0.113 1.243 0.115 

PI2 3.105 0.019 3.104 0.019 2.952 0.018 2.974 0.017 

ZMIN 23.850 11.846 48.800 15.367 21.450 11.085 18.805 1.528 

ZAVE 252.340 0.000 129.766 0.000 332.978 0.000 539.744 0.000 

ZMAX 1165.600 35.514 896.600 283.129 809.600 52.837 855.000 123.399 

ST 174.707 27.031 110.321 18.649 171.270 27.147 208.943 32.213 

POW 2.000 0.000 2.000 0.000 3.590 0.810 3.980 0.130 

FT 12.746 3.009 13.816 2.989 0.572 0.183 0.494 0.169 

GW 18.250 3.500 22.000 2.500 22.000 4.446 20.000 4.500 

T 20.000 4.000 20.000 4.000 20.000 4.000 20.000 4.000 

S   0.003 0.000 0.002 0.000 0.003 0.000 0.004 0.000 
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Appendix D: A comparison of the 5th and 95th percentiles (grey graphs) of the 

simulated ensembles with the time series of observed flow for some 

selected basins (black graph). 
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