77 research outputs found

    Good Clinical Response to Erlotinib in a Non-Small Cell Lung Cancer Patient Harboring Multiple Brain Metastases and a Double Active Somatic Epidermal Growth Factor Gene Mutation

    Get PDF
    Recently, 2 small molecule kinase inhibitors (TKIs), targeting epidermal growth factor receptor (EGFR), have proven effective in the treatment of non-small cell lung cancer. However, it is unknown whether the EGFR double activating mutation of L858R in exon 21 and the in-frame deletion in exon 19 is a predictor of the effectiveness of EGFR-TKIs. We report for the first time a case of non-small cell lung cancer with central nervous system metastases harboring a rare EGFR double activating mutation who showed a good clinical response to erlotinib, regardless of his poor performance status, as swallowing is not possible. Therefore, we suggest that erlotinib may become a therapeutic choice in cases of central nervous system metastases even with poor performance status

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effectiveness of time-varying echo information for target geometry identification in bat-inspired human echolocation.

    No full text
    Bats use echolocation through flexible active sensing via ultrasounds to identify environments suitable for their habitat and foraging. Mimicking the sensing strategies of bats for echolocation, this study examined how humans acquire new acoustic-sensing abilities, and proposes effective strategies for humans. A target geometry identification experiment-involving 15 sighted people without experience of echolocation-was conducted using two targets with different geometries, based on a new sensing system. Broadband frequency-modulated pulses with short inter-pulse intervals (16 ms) were used as a synthetic echolocation signal. Such pulses mimic buzz signals emitted by bats for echolocation prior to capturing their prey. The study participants emitted the signal from a loudspeaker by tapping on Android devices. Because the signal included high-frequency signals up to 41 kHz, the emitted signal and echoes from a stationary or rotating target were recorded using a 1/7-scaled miniature dummy head. Binaural sounds, whose pitch was down-converted, were presented through headphones. This way, time-varying echo information was made available as an acoustic cue for target geometry identification under a rotating condition, as opposed to a stationary one. In both trials, with (i.e., training trials) and without (i.e., test trials) answer feedback immediately after the participants answered, the participants identified the geometries under the rotating condition. Majority of the participants reported using time-varying patterns in terms of echo intensity, timbre, and/or pitch under the rotating condition. The results suggest that using time-varying patterns in echo intensity, timbre, and/or pitch enables humans to identify target geometries. However, performance significantly differed by condition (i.e., stationary vs. rotating) only in the test trials. This difference suggests that time-varying echo information is effective for identifying target geometry through human echolocation especially when echolocators are unable to obtain answer feedback during sensing
    corecore