342 research outputs found

    Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization

    Full text link
    We aimed to evaluate computer-aided diagnosis (CADx) system for lung nodule classification focusing on (i) usefulness of gradient tree boosting (XGBoost) and (ii) effectiveness of parameter optimization using Bayesian optimization (Tree Parzen Estimator, TPE) and random search. 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of local binary pattern was used for calculating feature vectors. Support vector machine (SVM) or XGBoost was trained using the feature vectors and their labels. TPE or random search was used for parameter optimization of SVM and XGBoost. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost were 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. In conclusion, XGBoost was better than SVM for classifying lung nodules. TPE was more efficient than random search for parameter optimization.Comment: 29 pages, 4 figure

    フジンカ リョウイキ ノ MRI

    Full text link

    Neurite imaging reveals microstructural variations in human cerebral cortical gray matter

    Get PDF
    We present distinct patterns of neurite distribution in the human cerebral cortex using diffusion magnetic resonance imaging (MRI). We analyzed both high-resolution structural (T1w and T2w images) and diffusion MRI data in 505 subjects from the Human Connectome Project. Neurite distributions were evaluated using the neurite orientation dispersion and density imaging (NODDI) model, optimized for gray matter, and mapped onto the cortical surface using a method weighted towards the cortical mid-thickness to reduce partial volume effects. The estimated neurite density was high in both somatosensory and motor areas, early visual and auditory areas, and middle temporal area (MT), showing a strikingly similar distribution to myelin maps estimated from the T1w/T2w ratio. The estimated neurite orientation dispersion was particularly high in early sensory areas, which are known for dense tangential fibers and are classified as granular cortex by classical anatomists. Spatial gradients of these cortical neurite properties revealed transitions that colocalize with some areal boundaries in a recent multi-modal parcellation of the human cerebral cortex, providing mutually supportive evidence. Our findings indicate that analyzing the cortical gray matter neurite morphology using diffusion MRI and NODDI provides valuable information regarding cortical microstructure that is related to but complementary to myeloarchitecture

    Signal Changes in the Brain on Susceptibility-Weighted Imaging Under Reduced Cerebral Blood Flow: A Preliminary Study

    Get PDF
    OBJECTIVES: To reveal the characteristics of susceptibility‐weighted imaging (SWI) under low cerebral blood flow (CBF) induced by hyperventilation (HV). MATERIALS AND METHODS: This study was approved by the institutional review board. Informed consent was obtained. Six healthy volunteers (5 men, 1 woman; mean age, 29 years; range, 24‐33 years) underwent SWI and arterial spin labeling perfusion imaging under normal ventilation (NV) and HV at 3.0 T. Regions of interest (ROIs) were placed on gray matter (GM) and white matter (WM) of the frontal lobe (FL) and occipital lobe (OL). Intensities of ROIs were compared between NV and HV. Contrast of veins compared with adjacent cerebral parenchyma (CV) was also compared between NV and HV. RESULTS: CBF during HV (CBFHV) was decreased compared with CBF during NV (CBFNV) (29.1 ± 4.6%). FL‐GMHV and OL‐GMHV showed significant signal decreases compared with FL‐GMNV and OL‐GMNV, respectively (P= .018, .017). CVHV was significantly increased compared with CVNV (164.1 ± 29.9%) (P= .00019). CONCLUSIONS: SWI sensitively reflects HV‐induced decreases in CBF. The present results might assist in the interpretation of SWI in clinical practice, since CBF decreases might also influence signal changes on SWI

    Feasibility and mid- to long-term results of endovascular treatment for portal vein thrombosis after living-donor liver transplantation

    Get PDF
    PURPOSEWe aimed to evaluate mid- to long-term results of endovascular treatment for portal vein thrombosis (PVT) after living-donor liver transplantation (LDLT).METHODSThirty cases (14 males, 16 females; age range, 0.67–65 years) who underwent endovascular treatment including thrombolysis, angioplasty, stent placement, and/or collateral embolization for PVT after LDLT from 2001 to 2017 were retrospectively reviewed. Clinical and procedural data were collected and analyzed regarding the patency of the PVT site at the last follow-up date (PVT-free persistency) using Log-rank test. Results were considered statistically significant at P < 0.05.RESULTSMedian follow-up was 120 months. The technical success rate was 80% (n=24). Patency rates at 1 week and 1, 3, 6, 12, 36, and 60 months were 73%, 59%, 55%, 51%, 51%, 51%, and 51% for primary patency and 80%, 70%, 66%, 66%, 66%, 61%, and 61% for assisted patency after secondary endovascular treatment. PVT-free persistency rates regarding the subgroups were as follows: children under 12 years vs. adults, 50% vs. 68% (P = 0.42); acute vs. nonacute, 76% vs. 46% (P = 0.10); localized vs. extensive, 90% vs. 50% (P = 0.035); transileocolic approach vs. percutaneous-transhepatic approach, 71% vs. 54% (P = 0.39); and thrombolysis-based treatment vs. non-thrombolysis-based treatment, 71% vs. 44% (P = 0.12), respectively. Among technically successful cases, PVT-free persistency rate was 94% for those with hepatopetal flow in the peripheral portal vein vs. 17% for those without hepatopetal flow (P < 0.001). The only major complication occurring was pleural hemorrhage (n=1). Minor complications (i.e., fever) occurred in 18 patients (60%).CONCLUSIONIn conclusion, mid- to long-term portal patency following endovascular treatment was approximately 50%–60% in PVT patients after LDLT. PVT site patency over three months after the first endovascular treatment, localized PVT, and hepatopetal flow in the peripheral portal vein were identified as key prognostic factors for mid- to long-term portal patency

    Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter

    Get PDF
    Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are widely used models to infer microstructural features in the brain from diffusion-weighted MRI. Several studies have recently applied both models to increase sensitivity to biological changes, however, it remains uncertain how these measures are associated. Here we show that cortical distributions of DTI and NODDI are associated depending on the choice of b-value, a factor reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated with those in NODDI, particularly when applied highly diffusion-weighted data (b-value = 3000 sec/mm2). This was supported by simulation analysis, which revealed that DTI-derived parameters with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction and partial volume. These findings suggest that high b-value DTI redundantly parallels with NODDI-based cortical neurite measures, but the conventional low b-value DTI is hard to reasonably characterize cortical microarchitecture

    Quantitative and qualitative evaluation of sequential PET/MRI using a newly developed mobile PET system for brain imaging

    Get PDF
    [Purpose]To evaluate the clinical feasibility of a newly developed mobile PET system with MR-compatibility (flexible PET; fxPET), compared with conventional PET (cPET)/CT for brain imaging.[Methods]Twenty-one patients underwent cPET/CT with subsequent fxPET/MRI using 18F-FDG. As qualitative evaluation, we visually rated image quality of MR and PET images using a four-point scoring system. We evaluated overall image quality for MR, while we evaluated overall image quality, sharpness and lesion contrast. As quantitative evaluation, we compared registration accuracy between two modalities [(fxPET and MRI) and (cPET and CT)] measuring spatial coordinates. We also examined the accuracy of regional 18F-FDG uptake.[Results]All acquired images were of diagnostic quality and the number of detected lesions did not differ significantly between fxPET/MR and cPET/CT. Mean misregistration was significantly larger with fxPET/MRI than with cPET/CT. SUVmax and SUVmean for fxPET and cPET showed high correlations in the lesions (R = 0.84, 0.79; P < 0.001, P = 0.002, respectively). In normal structures, we also showed high correlations of SUVmax (R = 0.85, 0.87; P < 0.001, P < 0.001, respectively) and SUVmean (R = 0.83, 0.87; P < 0.001, P < 0.001, respectively) in bilateral caudate nuclei and a moderate correlation of SUVmax (R = 0.65) and SUVmean (R = 0.63) in vermis.[Conclusions]The fxPET/MRI system showed image quality within the diagnostic range, registration accuracy below 3 mm and regional 18F-FDG uptake highly correlated with that of cPET/CT

    Imaging findings of granulocyte colony-stimulating factor-producing tumors: a case series and review of the literature

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF)-producing tumors have an aggressive clinical course. Here, we report five cases of G-CSF-producing tumors and review the literature, focusing on imaging findings related to tumor-produced G-CSF. In addition to our cases, we identified 30 previous reports of G-CSF-producing tumors on which 18F-fluorodeoxyglucose positron emission tomography (FDG-PET)/CT, bone scintigraphy, or evaluation of bone marrow MR findings was performed. White blood cell count, serum C-reactive protein, and serum interleukin-6 were elevated in all cases for which these parameters were measured. G-CSF-producing tumors presented large necrotic masses (mean diameter 83.2 mm, range 17–195 mm) with marked FDG uptake (mean maximum standardized uptake value: 20.09). Diffuse FDG uptake into the bone marrow was shown in 28 of the 31 cases in which FDG-PET/CT was performed. The signal intensity of bone marrow suggested marrow reconversion in all seven MRI-assessable cases. Bone scintigraphy demonstrated no significant uptake, except in two cases with bone metastases. Splenic FDG uptake was increased in 8 of 10 cases in which it was evaluated. These imaging findings may reflect the effects of tumor-produced G-CSF. The presence of G-CSF-producing tumors should be considered in patients with cancer who show these imaging findings and marked inflammatory features of unknown origin
    corecore