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A B S T R A C T

We present distinct patterns of neurite distribution in the human cerebral cortex using diffusion magnetic reso-
nance imaging (MRI). We analyzed both high-resolution structural (T1w and T2w images) and diffusion MRI data
in 505 subjects from the Human Connectome Project. Neurite distributions were evaluated using the neurite
orientation dispersion and density imaging (NODDI) model, optimized for gray matter, and mapped onto the
cortical surface using a method weighted towards the cortical mid-thickness to reduce partial volume effects. The
estimated neurite density was high in both somatosensory and motor areas, early visual and auditory areas, and
middle temporal area (MT), showing a strikingly similar distribution to myelin maps estimated from the T1w/
T2w ratio. The estimated neurite orientation dispersion was particularly high in early sensory areas, which are
known for dense tangential fibers and are classified as granular cortex by classical anatomists. Spatial gradients of
these cortical neurite properties revealed transitions that colocalize with some areal boundaries in a recent multi-
modal parcellation of the human cerebral cortex, providing mutually supportive evidence. Our findings indicate
that analyzing the cortical gray matter neurite morphology using diffusion MRI and NODDI provides valuable
information regarding cortical microstructure that is related to but complementary to myeloarchitecture.

Introduction

Classical anatomists subdivided the postmortem human brain into
many distinct cortical areas to provide an anatomical framework for
analyzing specific brain functions (Brodmann, 1909; Hopf, 1955, 1956;
Hopf and Vitzthum, 1957; Vogt and Vogt, 1919a, 1919b; von Economo
and Koskinas, 1925). Particularly, myeloarchitectonics focused on
layer-specific distribution of myelinated axons and their intra-cortical
wiring arrangements (Braak, 1980; Nieuwenhuys, 2013) and enabled
anatomists to parcellate the whole cerebral cortex into as many as 200
candidate areas (see reviews by Nieuwenhuys, 2013; Nieuwenhuys et al.,
2015; Nieuwenhuys and Broere, 2017). Recent non-invasive magnetic
resonance imaging (MRI) methods have enabled mapping of contrast
related to myelin content over all of the cerebral neocortex (Eickhoff
et al., 2005; Salat et al., 2009; Sigalovsky et al., 2006). This technique

relied mostly on the T1-weighted (T1w) contrast, which was shown to be
correlated with myelin content (Bock et al., 2009, 2013) and partly on
T2-star weighted contrast co-localized with iron (Fukunaga et al., 2010).
This approach was later augmented by Glasser and Van Essen (Glasser
and Van Essen, 2011) using the T1w/T2-weighted (T2w) ratio. Com-
bined with improvements in data acquisition and analysis by the Human
Connectome Project (HCP), this enabled high-quality individual subject
myelin mapping (Glasser et al., 2013, 2014), which contributed sub-
stantially to a recent in-vivo parcellation of the human cerebral cortex
(Glasser et al., 2016). Although the T1-based MRI contrast provides in-
formation regarding the myelin content within voxels, it does not reflect
morphological features such as the geometrical arrangement of myelin-
ated axons in the cortex.

Diffusion MRI (dMRI) provides unique insights into brain micro-
structure and geometry of fiber tract orientations (Johansen-Berg and

* Corresponding author. Functional Architecture Imaging Team, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
E-mail address: takuya.hayashi@riken.jp (T. Hayashi).

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

https://doi.org/10.1016/j.neuroimage.2018.02.017
Received 15 May 2017; Accepted 9 February 2018
Available online 12 February 2018
1053-8119/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

NeuroImage 182 (2018) 488–499

mailto:takuya.hayashi@riken.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.02.017&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.02.017
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2018.02.017
https://doi.org/10.1016/j.neuroimage.2018.02.017


Behrens, 2013). Fiber orientations can be assessed using diffusion tensor
imaging (DTI) (Basser et al., 1994) which models diffusion as a Gaussian
distribution to estimate quantitative parameters such as mean diffusivity
(MD) and fractional anisotropy (FA), thereby providing a popular means
to investigate tissue microstructure (Bennett et al., 2009; Bodini et al.,
2009) (for review, Johansen-Berg and Behrens, 2013). However, the
parameter estimates of the DTI model do not relate to specific features
within tissue microstructure and are consequently sensitive to multiple
structural compartments concurrently (Pierpaoli et al., 1996). Several
models have been proposed that attribute diffusion signal b-value
dependence to a set of compartments representing different environ-
ments of water (Assaf et al., 2008; Assaf and Basser, 2005; Behrens and
Johansen-Berg, 2005; Clark and Le Bihan, 2000; Genc et al., 2017).

Among these diffusion models is Neurite Orientation Dispersion and
Density Imaging (NODDI) (Zhang et al., 2012), an approach to interpreting
in vivo dMRI by linking the dMRI signal to estimates of neuroanatomical
microarchitecture. The NODDI model assumes three microstructural en-
vironments for water diffusion (intra-cellular, extra-cellular and cerebro-
spinal fluid [CSF] compartments). The intra-cellular compartment is
assumed to be infinitely anisotropic for diffusion motion, an extreme
version of the diffusion presumed to occur in neurites (a collective term
referring to both dendrites and axons). This compartmentalization enables
quantitative measures such as neurite density index (NDI) and orientation
dispersion index (ODI) andaims to reduce the limitations of theDTImodel.
For example, in parts of the centrum semiovale where FA is low, ODI and
NDI show high values, reflecting the crossing of many axons (Zhang et al.,
2012). Some studies have reportedwhitematter changes of NODDI related
to aging (Billiet et al., 2015; Chang et al., 2015; Eaton-Rosen et al., 2015;
Genc et al., 2017; Kodiweera et al., 2016; Kunz et al., 2014) and neurologic
disorders (Adluru et al., 2014; Billiet et al., 2014; Timmers et al., 2015).
Other studies reported NODDI changes in cortical gray matter in focal
cortical dysplasia (Winston et al., 2014), aging (Nazeri et al., 2015) and
schizophrenia (Nazeri et al., 2016). However, the distributions of NODDI
measures in cortical gray matter have not previously been investigated in
detail. Previous efforts to resolve cortical architecture using
high-resolution DTI (Aggarwal et al., 2015; McNab et al., 2013) covered
only limited portions of the cortex and did not characterize neurite
morphology.

In the present study, we investigated the distribution of neurite
properties across the human cerebral cortex by applying the NODDI
model to high-resolution HCP data (Sotiropoulos et al., 2013). The im-
aging data were preprocessed with the HCP pipelines, and the cortical
surfaces were reconstructed based on T1w and T2w images (Glasser
et al., 2013). Using high-resolution dMRI data, statistical aspects of
cortical neurite properties were assessed using NODDI (Zhang et al.,
2012) with optimization for intrinsic diffusivity of the cortical gray
matter tissue followed by mapping from the cortical grey matter ribbon
to the surface. We also compared the NODDI results with cortical maps of
conventional DTI to better understand the relationships between these
measures. We discuss how these cortical maps of neurite properties relate
to previously reported maps of myeloarchitecture and cytoarchitecture
and the significance of neurite morphology mapping for a better under-
standing of cortical myelomicrostructure.

Materials and methods

Surface maps of NODDI and DTI measures, myelin contrast and
cortical thickness were generated using the publicly available HCP
dataset. The data were analyzed using the HCP pipelines (https://github.
com/Washington-University/Pipelines), Connectome Workbench
(https://github.com/Washington-University/workbench), FreeSurfer
5.3 (https://surfer.nmr.mgh.harvard.edu/), Functional Magnetic Reso-
nance Imaging of the Brain Software Library (FSL) 5.09 (www.fmrib.ox.
ac.uk/fsl) and MATLAB (http://www.mathworks.com/). Data analyses
were performed at RIKEN, and ths use of HCP data in this study was
approved by the institutional ethical committee (KOBE-IRB-16-24).

Subjects and HCP data preprocessing

Analyses were based on high-resolution structural images (0.7-mm
isotropic T1w and T2w images) and dMRI images (1.25-mm isotropic res-
olution) obtained from 505 healthy subjects (age, 22–35 years) in the pub-
licly available HCP dataset (Van Essen et al., 2013). The dMRI image
included 270 vol with 90 vol for each of three shells of b-values (b¼ 1000,
2000 and 3 000 s/mm2) in addition to 18 non-diffusion-weighted
(b¼ 0 s/mm2) volumes. We used preprocessed data using methods
detailed previously (Glasser et al., 2013). In brief, the structural imageswere
preprocessed (corrected for gradient nonlinearity, readout, and bias field;
aligned to AC-PC “native” space and averaged when multiple runs were
available; then registered to MNI 152 space using FSL's FNIRT). The native
space images were used to generate individual white and pial surfaces
(Glasser et al., 2013) using the Freesurfer and HCP pipelines. In the Post-
FreeSurfer pipeline, the individual subject's native-mesh surfaces were
registeredusingamultimodal surfacematching (MSM)algorithm(Robinson
et al., 2014) with MSMSulc to the Conte69 folding-based template (Van
Essen et al., 2012). Cortical myelin content was estimated by dividing the
T1w image by the T2w image, mapping onto the cortical surface and cor-
recting for the bias field (Glasser et al., 2013, 2014; Glasser and Van Essen,
2011) and cortical thickness was calculated in FreeSurfer using white and
pial surfaces. Subsequently, these surfaces were non-linearly registered
across subjects using MSMAll surface registration, which was based on the
multi-modal areal features, suchasmyelinmaps, resting statenetworkmaps,
andresting statevisuotopicmaps (Glasseret al., 2016;Robinsonetal., 2014).

Diffusion MRI data was also preprocessed using the HCP pipelines. In
brief, corrections for gradient distortion, static-field (B0) distortion and
eddy current distortion, and cross modal registration were performed
(Glasser et al., 2013; Sotiropoulos et al., 2013). The intensity was
normalized by the mean of volumes with b¼ 0 s/mm2 (b0 volumes) and
the B0-inhomogeneity distortion was corrected using two opposing phase
encoded images and FSL's Topup (Andersson et al., 2003). The eddy cur-
rent induced field inhomogeneities, and the head motion for each image
volume was corrected using FSL's Eddy (version 5.0.9, before the HCP's
recent recomputation that included outlier detection) (Andersson et al.,
2012), followedby correction for the gradient nonlinearity. Diffusion data
were registered to the structural T1w AC-PC space using the b0 volume
and the white surface using the BBR cost function in FSL and FreeSurfer's
BBRegister. The diffusion gradient vectors were rotated based on the
rotational information of the b0 to T1w transformation matrix.

NODDI and DTI calculation

The NODDI method models brain microarchitecture using three
compartments: (1) intracellular (restricted diffusion, bounded by the
membrane of neurites and myelin sheaths), (2) extracellular (anisotropic
hindered diffusion, outside of neurites and potentially including glial
cells), and (3) CSF compartments (isotropic diffusion) (Zhang et al.,
2012). The normalized signal of dMRI (A) is thus written as:

A ¼  ð1� visoÞfvicAic þ ð1� vicÞAecÞg þ visoAiso (1)

where Aic and νic are the normalized signal and volume fraction of the
intra-cellular compartment (neurite density index, NDI); Aec is the
normalized signal of the extracellular compartment; Aiso and νiso are the
normalized signal and volume fraction, respectively, of the CSF
compartment. Each compartment is described by different diffusion
distributions: infinitely anisotropic with Watson distribution,1

1 This compartment comprises a set of sticks, i.e., cylinders of zero radius, to capture the
highly restricted nature of diffusion perpendicular to neurites and unhindered diffusion
along them. The normalized signal, Aic, adopts the orientation-dispersed cylinder model
by a function of the gradient direction, b-value, intrinsic diffusivity along stick and the
probability of finding sticks along orientation direction modeled as a Watson distribution
(Zhang et al., 2012).
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anisotropic Gaussian distribution, and isotropic distributions, respec-
tively. The additional NODDI parameters are:

� dk: intrinsic free diffusivity
� K: concentration parameter of Watson distribution
� μ: mean orientation of Watson distribution
� diso: isotropic diffusivity

where the original NODDI model, designed for analyses of the white
matter, assumes the diffusivity (dk ¼ 1.7� 10�3 mm2/s) and in CSF
(diso¼ 3.0� 10�3 mm2/s). Because we investigated gray matter proper-
ties, we sought to estimate the value of dk using the following procedure
introduced by Guerrero et al. (2016). Briefly, for an empirically chosen
range of dk from 0.6 to 2.5 and a step size of 0.1, the NODDI model was
fitted to a set of the cortical voxel data chosen from the middle axial slice
of the segmented cortical ribbon volume generated with the HCP pipeline
(ribbon.nii.gz). The quality of fit of the model was assessed using a
maximum likelihood function, and the value of dkwith best fit to the data
was selected for each voxel (Fig. S1A). Subsequently, the optimal value of
dk (d*k) was determined for each subject using maximum likelihood
estimation with log-normal distribution (Fig. S1B). The calculated
cross-subject mean (s.e.m.) of the d*k was 1.1 (0.1)� 10�3 mm2/s.

The NODDI model was fitted using the optimized value of d*k and
Accelerated Microstructure Imaging via Convex Optimization (AMICO)
(Daducci et al., 2015), which re-formulates the original NODDI model as
a linear system and shortens the calculation time. We used default values
of regularization (λ¼ 0.001 and γ¼ 0.5) for AMICO. All diffusion data
(b¼ 0, 1000, 2000, and 3 000 s/mm2) were used to evaluate NODDI
parameter estimates in the AC-PC aligned structural space. The validity of
using an optimized value of d*k, and the assumption of equality of
intra-cellular and extra-cellular parallel diffusivity are discussed in sec-
tion of Optimization and validity of NODDI in the gray matter in
Discussion.

Because several studies have addressed cortical diffusion properties
using high-resolution DTI (Aggarwal et al., 2015; McNab et al., 2013), we
also calculatedMD and FAwith conventional DTI using DTIFIT in FSL. All
diffusion data were used to be consistent with NODDI, and DTI was fitted
using least squares on the log-transformed signals. We also fitted DTI
using the diffusion data using only b¼ 1 000 s/mm2 (108 vol) to be in
line with typical DTI experiments (Johansen-Berg and Behrens, 2013)
and simulation study for optimization (Alexander and Barker, 2005). The
inverted MD was calculated with the following formula: inversed
MD¼ 1/MD. Subsequently, these DTI measures were mapped onto the
cortical surface similar to NODDI (see next section) to compare the
neurite and diffusion properties.

Surface mapping

The parameters of NODDI (vic, K and diso) and DTI (FA and MD) were
mapped onto the cortical surface using an algorithm weighted towards
the cortical mid-thickness (Glasser and Van Essen, 2011). For each
mid-thickness surface vertex on the native mesh, the algorithm identified
cortical ribbon voxels within a cylinder orthogonal to the local surface.
The voxels were excluded if the value exceeded�1SD of all values within
the cortical ribbon, to remove voxels with substantial partial volume in
the CSF or white matter. For the remaining voxels their values were
weighted using a Gaussian function (FWHM¼~4mm, σ¼ 5/3mm)
along the axis normal to the surface, and the resulting value was assigned
to the vertex. The surface maps were subsequently resampled based on
MSMAll surface registration (Glasser et al., 2016; Robinson et al., 2014)
and onto the 32 k group average surface mesh. Finally, the orientation
dispersion index (ODI) was calculated using the surface metric of K and
the following equation (Zhang et al., 2012):

ODI ¼ 2
π arctanð1=KÞ (2)

To evaluate the correspondence between NODDI surface maps and
the HCP multimodal parcellation, we estimated the local gradient max-
ima (‘ridges’) of group-average NDI and ODI maps using the method
described previously (Glasser et al., 2016), and borders were created
from these gradients using the border optimization function in Con-
nectome Workbench.

Although the NODDI model inherently takes care of the partial vol-
ume effects (PVE) in each compartment, the surface mapping algorithm
may include residual PVE (despite the steps outlined above) in regions
where the cortex is very thin, as the gray matter values may be
contaminated with white matter and/or CSF values. Therefore, when a
significant correlation was found between the estimated neurite measure
and cortical thickness, we further investigated whether the correlation
might be induced by the PVE. This was performed in all subjects by
mapping the measure of the ODI at the border of the white and gray
matter (Fig. S2D) and CSF value (Fiso) onto the surface (Fig. S2E) and
correlating the averaged surface value with cortical thickness.

Statistical analysis

Surface maps (NDI, ODI, MD, FA, myelin and cortical thickness) were
averaged across subjects, cortex parcellation was performed using HCP's
multi-modal parcellation version 1.0 (HCP_MMP1.0 210P MPM version;
Glasser et al., 2016). The mean value for each of the 180 parcels/hemi-
sphere was calculated. Associations between neurite (NDI, ODI) and
other cortical properties (MD, FA, myelin and cortical thickness) were
investigated using Pearson correlation analysis on their average maps.
We also calculated the correlation matrix in each subject and estimated
the mean of correlation coefficient using Fisher Z transformation.

We also assessed subject variability and reproducibility for cortical
mapping of NODDI and other metrics. We identified HCP retest data in 32
of 505 subjects. Subject variability was calculated based on the standard
deviation of the subject's variable of cortical metrics. The subject variable
was obtained by averaging the test and retest data. Reproducibility was
assessed with the coefficient of repeatability and proportional bias (Bland
and Altman, 1986; Bland, 2005).

Because the quality of NODDI parameter estimates seemed to depend
on the image quality and preprocessing, we estimated practical quality by
temporal signal-to-noise ratio (tSNR) of preprocessed b¼ 0 vol, and
surface parcels with tSNR<17 were removed from the analysis. The
cutoff was defined somewhat arbitrarily, but as shown in section of SNR,
single subject maps, reproducibility and potential partial volume effect in
Results, all regions with mean tSNR<17 were located near air-filled si-
nuses, where signals usually suffer from B0 field inhomogeneity, and
showed artifactually high values in the estimated values in NDI and ODI.

Results

Cortical distribution of NDI and similarity to myelin map

Fig. 1A–D shows the lateral and medial views of the inflated group
average surface maps of NDI and ODI for 505 subjects, with the
HCP_MMP1.0 parcel boundaries overlaid in panels B and D. Cortical
neurite density index (NDI, Fig. 1A,B) showed high values in early motor
and somatosensory areas in the central sulcus, early auditory areas in the
Sylvian fissure, early visual areas in the occipital lobe, retrosplenial
complex, middle temporal (MT and MST) areas, and areas LIPv and 47m
in the intraparietal and orbitofrontal cortices, respectively. In contrast,
values were generally low in many other regions, including those asso-
ciated with higher cognitive functions.

We found a striking similarity in the NDI maps compared with the
myelin maps obtained using the T1w/T2w ratio (Fig. 1E, F). This was
evident when the cross-subject mean values in each parcel were analyzed
in detail. A strong positive correlation was found between NDI and
estimated myelin content (R¼ 0.68, p< 0.00001, df¼ 329) (Fig. 2A,
Table S1). However, this trend has clear exceptions, including lightly
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Fig. 1. Diffusion MRI derived neurite properties, myelin, and cortical thickness maps of 505-subject average cerebral cortex. (A) Neurite density index (NDI), (C)
orientation dispersion index (ODI), (E) myelin and (G) cortical thickness. (B, D, F and H) The imaging modalities superimpose with the boundaries of the Human
Connectome Project (HCP) multi-modal parcellations, 210P MPM (black lines) (Glasser et al., 2016). NDI is relatively uniform within most of the parcels, and
transitions in neurite properties often occur near parcel boundaries, whereas ODI is heterogenous in some parcellations, such as motor, somatosensory, and
primary visual (see also Fig. 3). The black arrows (anterior and middle cranial fossa) indicate artifacts regions where the NDI and ODI values are overestimated
because of low signal-to-noise ratio. Data at https://balsa.wustl.edu/32G5.
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myelinated regions, such as the anterior insular cortex (anterior agra-
nular insula complex [AAIC]), anterior cingulate cortex, temporal polar
cortex (area TG dorsal [TGd]) and hippocampus, that have moderate
values in the NDI maps but low values in the myelin maps (Fig. 2A). In
contrast, the correlation between NDI and cortical thickness was negative
and weaker, but still significant (R¼�0.18, p¼ 0.001, df¼ 329)
(Fig. S3C, Table S1).

Sharp transitions in the cortical NDI map frequently agreed with
boundaries in the HCP_MMP1.0 cortical parcellation. When the NDI map
was overlaid with HCP parcel boundaries made from the multi-modal
MRI analysis (Glasser et al., 2016) (Fig. 1B), many of the borders in
the NDI contrast corresponded with existing area borders in the HCP
parcellation. The correspondence of the cortical NDI contrast and HCP
parcellation was evident when the transitions in the NDI map were
highlighted using surface gradients, and the borders of NDI map were
estimated from the gradient (Figs. S4A and C).

Cortical distribution of ODI and moderate negative correlation with
thickness

The orientation dispersion index (ODI) was particularly high in the
early sensory cortical areas early somatosensory, auditory and visual
cortices, and relatively low in the frontal, parietal, and temporal cortices
(Fig. 1C,D). Although the ODI and NDI maps were strongly correlated
(R¼ 0.60, p< 0.00001, df¼ 329) (Fig. 2C, Table S1), clear differences
were observed, particularly in the primary motor cortex, where values
are low to moderate for ODI, but high for NDI (see also next section).

Cortical thickness (Fig. 1G, H) was inversely correlated with the ODI
map (more so than with the NDI map). A correlation analysis across
cortical parcellations showed a strong negative correlation between ODI
and cortical thickness (R¼�0.46, p< 0.00001, df¼ 329) (Fig. 2B,
Table S1). All of the early sensory areas showed high ODI and thin cortex.
Lateral and medial aspects of the frontal cortex showed low ODI and
relatively thick cortex, whereas the superior parietal cortex showed high
ODI and was thin. The correlation between ODI and myelin was highly
significant but not as strong as for NDI (R¼ 0.62, p< 0.00001, df¼ 329)
(Fig. S3A, Table S1). Transitions in ODI also corresponded in many re-
gions with areal boundaries in the HCP_MMP1.0 parcellation (Fig. 1D).
The borders in the ODI map estimated from its gradient map support this
observation (Figs. S4B and D).

Cortical NDI and ODI are positively correlated but different in some regions

The previously noted similarities between the NDI and ODI maps
(Fig. 1A,C) and positive correlation between NDI and ODI (R¼ 0.60,

p< 0.00001, df¼ 329) (Fig. 2C, Table S1) were consistent with previous
observations (Zhang et al., 2012). The positive correlation is even more
evident when points on the scatterplot were divided into five subgroups
based on the mean FA range of each parcel (Fig. 2C), a visualization
shown in Fig. 10 of Zhang et al. (2012). They showed more clearly that a
particular value of tissue FA can be achieved by different combinations of
NDI and ODI; e.g., two regions can have the same FA if the one with
larger NDI value also has the larger ODI.

The expanded surface views in Fig. 3 reveal additional noteworthy
relationships among these measures for somatomotor, auditory, and vi-
sual cortex. Fig. 3A and B, shows that area 4 and the early somatosensory
cortex (area 3a, 3b, 1 and 2) all have high NDI values (area 4¼ 0.315,
area 3a¼ 0.297, area 3b¼ 0.303, area 1¼ 0.276, area 2¼ 0.264),
whereas ODI values are more variable but are lower in area 4 on average
than in the somatosensory areas (area 4¼ 0.343, area 3a¼ 0.372, area
3b¼ 0.335, area 1¼ 0.367, area 2¼ 0.337) (Fig. 3A,B).

Within the early visual cortex, areas V1, V2, and V3 have comparably
highNDI andODI values on average (Fig. 3E, F).However, areaV1 showed
internal heterogeneity, wherein ODI was lower near the fundus of the
calcarine relative to the banks and lips of the calcarine, and itwas inversely
correlated with cortical thickness. In contrast, in early auditory areas,
including primary auditory area (A1),medial belt complex (MBelt), lateral
belt complex (LBelt), parabelt complex (PBelt) and retro-insular cortex (RI)
showed NDI and ODI distributions that were more uniform within each
parcel (Fig. 3I, J). Area A1, MBlet, LBelt and PBelt had higher ODI, relative
to area RI (Fig. 3J). Notably, ODI in the auditory cortex was less correlated
with cortical thickness than that in the somatosensory and visual areas.

Although the NDI contrast was aligned with many HCP parcellation
boundaries as described in section of Cortical distribution of NDI and
similarity to myelin map in Results, the correspondence between the ODI
map and parcel boundaries was not as strong. Specifically, ODI was
heterogeneous within several motor, somatosensory, and primary visual
areas (Fig. 3B, F). Whether ODI is sensitive to within-area organization
(e.g. somatotopy) or whether these reflect artifactual fluctuations re-
mains to be determined.

Comparison of NODDI and DTI - cortical NDI is strikingly similar to inverse
MD

We also compared the surface maps of NODDI measures with those of
DTI (Fig. 4). When DTI was fitted to all the diffusion data, the average
surface maps of the DTI measures, FA, and MD, are shown in Fig. S5 A–D.
The NDI map (Fig. 4A) was strongly negatively correlated with the MD
map and thus highly correlated with the inverse MD map (Fig. 4C); with
R¼ 0.97 p< 0.00001, df¼ 329 (Fig. 4C, Table S1). These findings

Fig. 2. Correlation between neurite orientation dispersion and density imaging (NODDI) and cortical architectural properties for each of the HCP_MMP1.0 areas.
(A) Neurite density index (NDI) plotted against myelin. (B) Orientation dispersion index (ODI) plotted against cortical thickness. (C) NDI plotted against ODI
classified by the value of FA. Each data point represents 505-subject mean values for each of the 300-parcels, where SNR exceeded 17. Abbreviations: H–L: left
hippocampus; H–R: right hippocampus; TGd-L: left area TG dorsal; TGd-R: right area TG dorsal; AAIC-LR: left and right anterior agranular insula complex. Data at
https://balsa.wustl.edu/zmqm.
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Fig. 3. Zoomed views of 505-subject neurite density (NDI), orientation dispersion (ODI), myelin, and thickness maps in exemplar early sensory cortices. (A, B, C
and D) Motor somatosensory cortex, (E, F, G, H) visual cortex, and (I, J, K and L) auditory cortex. (M, N, O) Full-hemisphere views showing myelin maps with
boxes outlining expanded regions in A - L. Abbreviations: 1: area 1; 2: area 2; 3a: area 3a; 3b: area 3b; 4: area 4; A1: primary auditory cortex; LBelt: lateral belt
complex; MBelt: medial belt complex; PBelt: parabelt complex; RI: retro insular cortex; V1; primary visual cortex; V2: secondary visual area; V3: third visual area.
Data at https://balsa.wustl.edu/XX6P.
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Fig. 4. Comparison of NODDI and DTI for
cortical mapping. (A) NDI and (B) inverse
MD (1/MD) show a similar spatial distribu-
tion across the cortical mantle. (C) 1/MD
plotted against NDI exhibits a strong positive
linear relationship. (D) The relationship be-
tween orientation dispersion index (ODI)
and fractional anisotropy (FA) depends on
NDI. Each data point represents 505-subject
mean values for each of the 331 parcels,
where SNR was >17. DTI data were based
on the fitting using all the diffusion data,
including b¼ 1000,2000, and 3 000 s/mm2.
See also Fig. S5 for conventional DTI data
calculated upon diffusion data <1 000 s/
mm2 and Table S1 for correlation with
NODDI data. Data at https://balsa.wustl.
edu/860z.

Fig. 5. Comparison between von Economo – Koskinas atlas (von Economo and Koskinas, 1925) and neurite orientation dispersion and density imaging (NODDI).
(A) Cortical distribution of von Economo's five main cytoarchitectonic types. Color codes are deciphered in the (B) cytoarchitecture type scheme superimposed
with tangential and radial myelinated axons. (Braak, 1980; Nieuwenhuys, 2013; Triarhou, 2009; von Economo and Koskinas., 1925). The outer and inner stripes
of Baillarger are indicated by the red and blue arrowheads, respectively. (C) Orientation dispersion index (ODI) map exhibits relative high values in granular and
polar cortices. (D) Cortical thickness map shows relatively low values in granular and polar cortices. Data at https://balsa.wustl.edu/Kz8q.
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indicated that NDI in the NODDI model strongly coupled with MD in the
DTI model (see Discussion). A plot of ODI versus FA (Fig. 4D) revealed a
moderate negative correlation (R¼�0.53, p< 0.00001, df¼ 329). The
relationship between ODI and FA depended modestly on the values of
NDI (colored symbols in Fig. 4D), which was consistent with a previous
report (Zhang et al., 2012).

When diffusion data with b¼ 1 000 s/mm2 was used for fitting in line
with conventional DTI, the cortical surface map of MD inverse was less
similar to the NODDI NDI than that based on all the diffusion data
(Fig. S5. E–H). The correlation of the mean values in parcels between NDI
and inverse MD was not so high (R¼ 0.32, p< 0.00001) as found for DTI
that used all the diffusion data (Table S1).

SNR, single subject maps, reproducibility and potential partial volume effect

Neurite density and ODI values were artifactually high in the orbi-
tofrontal and inferior temporal cortices, where SNR is< 17 (Fig. 1A,C
and S6). Thus, we removed these cortical areas (29 in the two hemi-
spheres) from the correlation analyses presented above.

The NDI and ODI maps in an exemplar individual subject (Fig. S7) had
a similar spatial pattern similar to the group average maps (Fig. 1), and
they also showed similar correlation patterns between modalities. In fact,
all but two of the correlations found in the average maps were also
confirmed to be significant at p< 0.001 in the mean correlation in each
subject (12 of 15 vs 14 of 15; Table S1). We also addressed the subject
variability and reproducibility of the NODDI data. The maps of coeffi-
cient of repeatability (Figs. S8G and H) and inter-subject variability
(Figs. S8A and B) for NODDI parameters have similar patterns. Most of
the cortical metrics were measured on a ratio scale (i.e., the higher their
between- and within-subject means were, the higher their variabilities
were). In addition, the cortical metrics showed no significant propor-
tional bias on Bland-Altman plots (data not shown). Therefore, the
cortical metrics could be analyzed via conventional statistics using
generalized linear models.

One potential confound in the current study is the partial volume
effects (PVE) from the CSF and white matter, which might influence ODI
estimates, a concern particularly in areas where the cortex was thin with
respect to dMRI voxel size. We found that ODI decreased with cortical
thickness (Fig. 2B), and PVE might contribute to this relationship. To
investigate the impact of white matter PVE contaminating the cortical
ODI estimate, we analyzed ODI values of the white matter surface and
found they were not significantly correlated with thickness (Fig. S2D).
The fraction of CSF in the NODDI model (Fiso) was also mapped on the
surface, but there was again not a significant correlation with thickness
(Fig. S2E). Although this provided no evidence that the PVE from the
white matter and CSF contributed to the negative correlation between
cortical ODI and thickness (Figs. 2B and Fig. S2A), some PVE contribu-
tion nonetheless remained possible. However, we hypothesized that
laminar differences in neurite properties also contribute significantly as
well (see section of Cortical neurite orientation dispersion reflects the
heterogeneity of neurite fiber orientations in Discussion).

Discussion

Our findings provide evidence for distinct patterns of neurite prop-
erties in the human cerebral neocortex. We found that cortical NDI was
high in sensorimotor, early visual and auditory and MT areas, closely
resembling myelin maps. Cortical ODI was particularly high in early
sensory cortices (somatosensory, visual, and auditory) and relatively low
not only in regions associated with higher cognitive functions, but also in
the primary motor cortex, and the pattern is inversely correlated with
cortical thickness. Thus, the distribution of estimated cortical neurite
properties is closely associated not only with myelin content, but also
with cortical thickness, which was closely related to cortical micro-
structural features such as cytoarchitecture (spatial arrangement of
neuronal cell bodies, cell types in layers and columns) and

myeloarchitecture (laminar distribution of myelinated fibers) (Zilles and
Amunts, 2012).

Cortical neurite density may reflect densities of cortical myelinated axons

Our finding that NDI correlates with cortical myelin agrees with
earlier experimental evidence, suggesting that myelinated axons restrict
diffusion of water molecules more strongly than non-myelinated axons
(Beaulieu, 2009). Furthermore, when a diffusion-based neurite model
was applied to high-quality data in ex-vivo rodent brain obtained at
16.4T, cortical NDI was strongly correlated with the optical staining in-
tensity of myelinated axons but less with non-myelinated axons and
dendrites, such as the stratum radiatum of the hippocampus (Jespersen
et al., 2010). Recent NODDI studies also showed that low NDI occurs in
regions with non-myelinated axons of newborn brain white matter
(Eaton-Rosen et al., 2015; Kunz et al., 2014). An association between NDI
andmyelin is supported by histological evidence, indicating that (1) axon
density is strongly correlated with myelin content (R¼ 0.81) (Schmierer
et al., 2007) and (2) cortical neuron density co-varies with myelin con-
tent (Collins et al., 2010; Glasser et al., 2014; Glasser and Van Essen,
2011). A recent study that directly compared NDI and histology in spinal
cord also supports this: NDI is sensitive not only to neuronal elements but
also to myelin density (Grussu et al., 2017). Since myelin water has much
shorter T2 than typical choices of TE in diffusion MRI experiments (Wu
et al., 2006), diffusion signals contain negligible contributions from
myelin water, thus providing no sensitivity to myelin. Altogether, the
strongest contributor to variation of NDI across the cortex is likely to be
the density of myelinated axons and not myelin itself. However, NDI may
also be sensitive to unmyelinated fibers known to be present in limbic
areas (Nieuwenhuys, 1996) as suggested by the modestly low NDI
(Fig. 1A) versus extremely low myelin content (Fig. 1C) in the anterior
cingulate and insular cortices.

Cortical neurite orientation dispersion reflects the heterogeneity of neurite
fiber orientations

We considered whether cortical neurite ODI captures a cortical geo-
metric aspect of myeloarchitecture, particularly related to heterogeneity
of neurite fiber orientations. Previous study in post mortem tissues
showed that ODI is specific and sensitive to the neurite orientation
dispersion in histology (Grussu et al., 2017). Axons in most cortical re-
gions are aligned preferentially along radial or tangential axes and less
commonly in oblique orientation (Zilles et al., 2015), thus heterogeneity
in cortical fiber orientation may be associated with the proportion of
tangential fibers relative to the radial. Cortical tangential fibers are found
in layers 1, 4, and 5, particularly, those in layers 4 and 5B (see Fig. 5
below), known as the outer and inner bands of Baillarger (1840), are
dense but seen in variable degrees in all of cortical regions, and thus have
been a main factor that defines myeloarchitectonic parcellation of the
cortex (Braak, 1980; Nieuwenhuys, 2013). Previous high-resolution
dMRI studies revealed anisotropic diffusion throughout the human
neocortex, which was predominantly in a radial orientation (McNab
et al., 2009), whereas dominant tangential diffusion orientation was
suggested in the primary somatosensory and auditory areas (McNab
et al., 2013). Primary motor cortex lacks any Baillarger band despite high
myelin content; it has strong radial diffusion orientation in DTI particu-
larly in the mid-cortical layers (Aggarwal et al., 2015; McNab et al.,
2013). Our NODDI analysis suggests that the heterogeneity of fiber
orientation is actually higher in primary sensory areas, including so-
matosensory, auditory, and visual areas, known for their strong Bail-
larger bands. This is partly supported by ex-vivo high resolution MRI
study using explicit fiber modelling to showmultiple components of fiber
orientations in the outer Baillarger band (stria of Gennari) of area V1
(Kleinnijenhuis et al., 2013).
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Cortical neurite properties resemble microscopic findings and cortical
classifications

The cortical distribution of neurite orientation estimates and cortical
thickness estimates resemble seminal classifications based on cortical
microscopic features (Fig. 5). Based on cytoarchitectural features of cell
density, size of cell bodies, and thickness of cortical layers (Triarhou,
2009; von Economo and Koskinas, 1925), five distinct cortical types have
been proposed: agranular, frontal, parietal, polar, and granular (Fig. 5A,
B). The granular cortex is located in the primary sensory areas, and
characterized by a thin cortex and highly developed granular layers
(layers 2 and 4) with many densely packed small neurons, such as small
pyramidal neurons and stellate neurons. Moreover, the granular cortex
has prominent tangential myelinated fiber bands of Baillarger (Fig. 5B)
(Baillarger, 1840). The agranular cortex is relatively thick and lacks clear
granular layers and has more large pyramidal cells (Triarhou, 2009; von
Economo and Koskinas, 1925) (Fig. 5B). The other three types (frontal,
parietal, and polar) represent intermediates between the agranular and
granular cortices.

In agreement with this classification, we found that ODI is relatively
high in early sensory areas (somatosensory, visual, and auditory), areas
also known as granular cortex (Triarhou, 2009; von Economo and Kos-
kinas, 1925) (Fig. 5A,C). Conversely, in the agranular cortex, radial
efferent axons of large pyramidal cells are distinctly present instead of
the inner band of Baillarger in layer 5 (Braak, 1980) (Fig. 5B). Again, we
found that ODI was relatively low in primary motor cortex, anterior
insular area and anterior cingulate area, classified as agranular cortex
(von Economo and Koskinas, 1925) (Fig. 5A,C). Taken together, our
finding supports the notion that cortical fiber organization is closely
associated with cytoarchitecture of the cortex (Nieuwenhuys, 2013;
Zilles and Amunts, 2012).

The contrast of NDI and ODI is also consistent with recent in vivo
cortical parcellation of the human brain (Glasser et al., 2016), which is
based on multi-modal MRI data, including structural and functional, but
not diffusion MRI. We found that many of the gradients in the NDI and
ODI maps were well correspondent to borders in the HCP parcellation
made frommulti-modal MRI information (Glasser et al., 2016) (Figs. S4A
and B). The HCP parcellation was made using the multi-modal cortical
information for myelin, thickness, task, and resting-state fMRI, but not
using those of dMRI data (Glasser et al., 2016). Therefore, our results
indicate that the cortical neurite properties from dMRI also had similar
information regarding the cortical functional segregation, mutually
supporting the validity of our cortical mapping.

Association between NDI in NODDI and MD in DTI

When we compared the NODDI measures with DTI, an unexpectedly
strong negative correlation was found between NDI and MD when
diffusion tensor was fitted to all the diffusion data (Fig. 4C). Previous
neuroanatomical studies revealed that MD was negatively correlated
with axon density (R¼�0.66) in post-mortem human brain white matter
(Mottershead et al., 2003; Schmierer et al., 2007), supporting our finding
of a negative correlation between MD and NDI (Fig. 4C). In addition, an
association between NDI and MD was predicted from the relationship of
the underlying diffusion models. Recently, Edwards et al. (2017) and
Lampinen et al. (2017) independently solved the equation of NODDI and
DTI models and derived a mathematical formula for the relationship
between NDI and MD in conditions that the CSF compartment (viso) was
negligible. The NDI (vic) was expressed by a simple function of MD as
follows:

vic ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
3MD
d==

� 1
�s

(2)

where MD is mean diffusivity, and d//is a constant for intrinsic diffusivity

assumed in the NODDI (Edwards et al., 2017; Lampinen et al., 2017). Our
data suggest that the estimated CSF compartment was small (<10%) in
cortical gray matter, and ODI varies over a limited range of values
(Fig. 4C); these are conditions close to those assumed by Edwards et al.
(2017) and Lampinen et al. (2017). Hence, our finding of a strong
negative correlation betweenMD and NDI may largely reflect predictions
based on diffusion and neurite models.

Note that equation (2) is eligible only if high b-value data were used
for both models of NODDI and DTI. There was not a strong correlation
between NDI and conventional MD (R¼�0.32), with the latter being
obtained by fitting tensor model to the diffusion data with b¼ 1 000 s/
mm2 as in a conventional method (Johansen-Berg and Behrens, 2013).
We presume there are two reasons for this, which relate to amount and
type of diffusion weight of obtained data. First, the total amount of
diffusion data collected with b¼ 1 000 s/mm2 is relatively small
compared to that of the data collected with b¼ 1000, 2000, and
3 000 s/mm2, so the results may be contaminated by fitting noise in the
former.

Second the CSF signal may not be as negligible in the low b-value data
such as those in b¼ 1 000 s/mm2 compared to higher b-value data, thus
violating the validity of equation (2). The intra-axonal compartment is
thought to be contributed by slow diffusion, which can be probed by
using higher b-values, making measurements more sensitive to smaller
water displacements (Assaf and Cohen, 2009). In fact, recent studies
suggest that high b-value DWI is more sensitive to the status of myelin
sheets and intra-axonal water (Assaf and Cohen, 2009; Bashat et al.,
2005; Cohen and Assaf, 2002; Hagmann et al., 2010). Supporting our
notion, a correlation of MD calculated using diffusion data with
b¼ 3 000 s/mm2 was much higher than those only using
b¼ 1 000 s/mm2 data (data not shown). Since the detailed investigations
are beyond the scope of the current study, we address DTI and its b-value
dependency of equation (2) in a future study.

Optimization and validity of NODDI in the gray matter

NODDI was well validated by histology and ex-vivo MRI: ODI is
highly sensitive and specific to neurite orientation dispersion, while NDI
is sensitive to neuronal elements and to the local amount of myelin
(Grussu et al., 2017). This was based on findings in post mortem tissues
with very high-resolution MRI. Despite we also applied NODDI to
high-resolution in vivo MRI data, there may be several concerns
particularly associated with assumptions in the NODDI model. In the
current study, we estimated the optimized value of intra-cellular diffu-
sivity for gray matter areas (1.1� 10�3 mm2/s) and used it as an
assumed value when calculating NODDI parameters. The NODDI also
has its basis on the tortuosity model (Szafer et al., 1995), which assumes
equality of the intracellular and extracellular axial diffusivity. The
model is concerned with potential bias in the white matter where neu-
rites are densely packed (Jelescu et al., 2016, 2015; Lampinen et al.,
2017) and is likely more valid in tissues where neurites are sparser,
similar to the gray matter (Fieremans et al., 2008; Novikov et al., 2016).
However, a recent study applied a general framework for estimating
orientational and microstructural parameters and revealed that while
the intra-cellular axial diffusivity in the gray matter was close to our
data, the extracellular axial diffusivity was much higher than this value
and variable across areas (Novikov et al., 2016). Although this approach
appears promising for more generalized estimation of neurite distribu-
tion, we feel it needs to be evaluated for stability and robustness of
fitting before practical application, which we consider outside the scope
of the current study.

Conclusions

We examined cortical neurite properties using the HCP dMRI data
and NODDI in human cortex in vivo. NDI was high in the sensorimotor
strip, early visual and auditory areas, and area MT, and was highly
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correlated with myelin maps estimated from T1w/T2w images. ODI was
particularly high in the early sensory cortices, known for dense tangential
fibers and classified as granular cortex by von Economo and Koskinas.
Because diffusion signals are considered insensitive to myelin water it-
self, our findings suggest that cortical NODDI provides valuable infor-
mation about the microarchitecture of myelinated neurites, which is
closely related to, but complementary to myeloarchitecture.

Our findings have several implications for the future application of
cortical neurite mapping. Tangential myelinated fibers are thought to
mainly comprise axonal collaterals leaving descending (radially ori-
ented) axons from the pyramidal cells (Braitenberg, 1962, 1974), and
hence related to local intra-cortical connections. Radial and tangential
fibers in the cortex originate from different developmental processes
(Callaway and Katz, 1990; Marín-Padilla, 1992), and they differ in
plasticity after injury (Van der Loos and Woolsey, 1973) and aging
(Scheibel et al., 1975). Therefore, assessment of tangential cortical fibers
with the cortical NODDI may be potentially useful to such processes in
relation to the neurocognitive behaviors of living human subjects.

Notes

Figures and data in this article are available via the BALSA database at
https://balsa.wustl.edu/study/show/k77v. The script for NODDI surface
mapping is available at https://github.com/RIKEN-BCIL/
NoddiSurfaceMapping. These materials have not been peer reviewed.
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