24 research outputs found

    Analysis of kaon spectra at SIS energies - what remains from the KN potential

    Full text link
    We study the reaction Au+Au at 1.48 AGeV and analyze the influence of the KN optical potential on cm spectra and azimuthal distributions at mid-rapidity. We find a significant change of the yields but only slight changes in the shapes of the distributions when turning off the optical potential. However, the spectra show contributions from different reaction times, where early kaons contribute stronger to higher momenta and late kaons to lower momenta. Azimuthal distributions of the kaons at mid-rapidity show a strong centrality dependence. Their shape is influenced by the KN optical potential as well as by re-scattering.Comment: SQM 2003 proceedings, 4 figures, 6 page

    On the exact conservation laws in thermal models and the analysis of AGS and SIS experimental results

    Get PDF
    The production of hadrons in relativistic heavy ion collisions is studied using a statistical ensemble with thermal and chemical equilibrium. Special attention is given to exact conservation laws, i.e. certain charges are treated canonically instead of using the usual grand canonical approach. For small systems, the exact conservation of baryon number, strangeness and electric charge is to be taken into account. We have derived compact, analytical expressions for particle abundances in such ensemble. As an application, the change in K/πK/\pi ratios in AGS experiments with different interaction system sizes is well reproduced. The canonical treatment of three charges becomes impractical very quickly with increasing system size. Thus, we draw our attention to exact conservation of strangeness, and treat baryon number and electric charge grand canonically. We present expressions for particle abundances in such ensemble as well, and apply them to reproduce the large variety of particle ratios in GSI SIS 2 A GeV Ni-Ni experiments. At the energies considered here, the exact strangeness conservation fully accounts for strange particle suppression, and no extra chemical factor is needed.Comment: Talk given at Strangeness in Quark Matter '98, Padova, Italy (1998). Submitted to J.Phys. G. 5 pages, 2 figure

    Kaon production at subthreshold and threshold energies

    Get PDF
    We summarize what we have learnt about the kaon production in nucleus-nucleus collisions in the last decade. We will address three questions: a) Is the K+K^+ production sensitive to the nuclear equation of state? b) How can it happen that at the same excess energy the same number of K+K^+ and KK^- are produced in heavy ion collisions although the elementary cross section in pp collisions differs by orders of magnitudes? and c) Why kaons don't flow?Comment: 5 pages, 4 figures, contribution to Strange Quark Matter 200

    Strangeness at SIS energies

    Full text link
    In this contribution we discuss the physics of strange hadrons in low energy (12AGeV\simeq 1-2 \rm AGeV) heavy ion collision. In this energy range the relevant strange particle are the kaons and anti-kaons. The most interesting aspect concerning these particles are so called in-medium modifications. We will attempt to review the current status of understanding of these in medium modifications. In addition we will briefly discuss other issues related with kaon production, such as the nuclear equation of state and chemical equilibrium.Comment: Proceedings Strange Quark Matter 2003, Atlantic Beach, NC, USA, March 200

    Hyperon production in Ar+KCl collisions at 1.76A GeV

    Get PDF
    We present transverse momentum spectra, rapidity distribution and multiplicity of Lambda-hyperons measured with the HADES spectrometer in the reaction Ar(1.76A GeV)+KCl. The yield of Xi- is calculated from our previously reported Xi-/(Lambda+Sigma0) ratio and compared to other strange particle multiplicities. Employing a strangeness balance equation the multiplicities of the yet unmeasured charged Sigma hyperons can be estimated. Finally a statistical hadronization model is used to fit the yields of pi-, K+, K0s, K-, phi, Lambda and Xi-. The resulting chemical freeze-out temperature of T=(76+-2) MeV is compared to the measured slope parameters obtained from fits to the transverse mass distributions of the particles

    Enhanced Out-of-plane Emission of K+ Mesons observed in Au+Au Collisions at 1 AGeV

    Full text link
    The azimuthal angular distribution of K+ mesons has been measured in Au + Au collisions at 1 AGeV. In peripheral and semi-central collisions, K+ mesons preferentially are emitted perpendicular to the reaction plane. The strength of the azimuthal anisotropy of K+ emission is comparable to the one of pions. No in-plane flow was found for K+ mesons near projectile and target rapidity.Comment: Accepted for publication in Phys. Rev.Let

    Kaon properties in (proto)neutron stars

    Full text link
    The modification on kaon and antikaon properties of in the interior of (proto-)neutron stars is investigated using a chiral SU(3) model. The parameters of the model are fitted to nuclear matter saturation properties, baryon octet vacuum masses, hyperon optical potentials and low energy a kaon-nucleon scattering lengths. We study the kaon/antikaon medium modification and explore the possibility of antikaon condensation in (proto-)neutron star matter at zero as well as finite temperature/entropy and neutrino content. The effect of hyperons on kaon and antikaon optical potentials is also investigated at different stages of the neutron star evolution.Comment: 17 pages including 4 figure

    Recent astrophysical and accelerator based results on the Hadronic Equation of State

    Full text link
    In astrophysics as well as in hadron physics progress has recently been made on the determination of the hadronic equation of state (EOS) of compressed matter. The results are contradictory, however. Simulations of heavy ion reactions are now sufficiently robust to predict the stiffness of the (EOS) from (i) the energy dependence of the ratio of K+K^+ from Au+Au and C+C collisions and (ii) the centrality dependence of the K+K^+ multiplicities. The data are best described with a compressibility coefficient at normal nuclear matter density κ\kappa around 200 MeV, a value which is usually called ``soft'' The recent observation of a neutron star with a mass of twice the solar mass is only compatible with theoretical predictions if the EOS is stiff. We review the present situation.Comment: invited talk Strange Quark Matter Conference SQM06 in Los Angele
    corecore