13 research outputs found

    Amperometric Screen-Printed Galactose Biosensor for Cell Toxicity Applications

    Get PDF
    © 2016, Copyright © Taylor & Francis Group, LLC. ABSTRACT: This paper reports the development and application of a biosensor for the amperometric determination of galactose in the presence of human hepatocellular carcinoma cells with and without a hepatotoxic agent. The biosensor was fabricated by drop-coating 1.5% cellulose acetate on a 3×3mm screen-printed carbon electrode followed by depositing 2 U of galactose oxidase. The electrodes dimensions were reduced to 3×0.5mm before measurements. Hepatocellular carcinoma cells were utilized for in vitro toxicity testing by evaluating the effect of paracetamol on galactose uptake. The amperometric responses to galactose indicated that the inhibition of uptake was directly proportional to the concentration of paracetamol following 24h of exposure to the hepatocellular carcinoma cells. These results demonstrate that the fabricated biosensor may be used for the real-time monitoring of cell metabolism and toxicity

    A Voltammetric Sensor Based on Chemically Reduced Graphene Oxide-Modified Screen-Printed Carbon Electrode for the Simultaneous Analysis of Uric Acid, Ascorbic Acid and Dopamine

    No full text
    A disposable screen-printed carbon electrode (SPCE) modified with chemically reduced graphene oxide (rGO) (rGO-SPCE) is described. The rGO-SPCE was characterized by UV-Vis and electrochemical impedance spectroscopy, and cyclic voltammetry. The electrode displays excellent electrocatalytic activity towards uric acid (UA), ascorbic acid (AA) and dopamine (DA). Three resolved voltammetric peaks (at 183 mV for UA, 273 mV for AA and 317 mV for DA, all vs. Ag/AgCl) were found. Differential pulse voltammetry was used to simultaneously detect UA, AA and DA in their ternary mixtures. The linear working range extends from 10 to 3000 μM for UA; 0.1 to 2.5 μM, and 5.0 to 2 × 104 µM for AA; and 0.2 to 80.0 μM and 120.0 to 500 µM for DA, and the limits of detection (S/N = 3) are 0.1, 50.0, and 0.4 μM, respectively. The performance of the sensor was evaluated by analysing spiked human urine samples, and the recoveries were found to be well over 98.0% for the three compounds. These results indicate that the rGO-SPCE represents a sensitive analytical sensing tool for simultaneous analysis of UA, AA and DA

    Immunochemical Assays and Nucleic-Acid Detection Techniques for Clinical Diagnosis of Prostate Cancer

    No full text
    Prostate cancer (PCa) is a significant cause of morbidity and mortality and the most common cancer in men in Europe, North America, and some parts of Africa. The established methods for detecting PCa are normally based on tests using Prostate Specific Antigen (PSA) in blood, Prostate cancer antigen 3 (PCA3) in urine and tissue Alpha-methylacyl-CoA racemase (AMACR) as tumour markers in patient samples. Prior to the introduction of PSA in clinics, prostatic acid phosphatase (PAP) was the most widely used biomarker. An early diagnosis of PCa through the detection of these biomarkers requires the availability of simple, reliable, cost-effective and robust techniques. Immunoassays and nucleic acid detection techniques have experienced unprecedented growth in recent years and seem to be the most promising analytical tools. This growth has been driven in part by the surge in demand for near-patient-testing systems in clinical diagnosis. This article reviews immunochemical assays, and nucleic-acid detection techniques that have been used to clinically diagnose PCa

    Recent Progress in the Development of Diagnostic Tests for Malaria

    No full text
    The impact of malaria on global health has continually prompted the need to develop effective diagnostic strategies. In malaria endemic regions, routine diagnosis is hampered by technical and infrastructural challenges to laboratories. These laboratories lack standard facilities, expertise or diagnostic supplies; thus, therapy is administered based on clinical or self-diagnosis. There is the need for accurate diagnosis of malaria due to the continuous increase in the cost of medication, and the emergence and spread of drug resistant strains. However, the widely utilized Giemsa-stained microscopy and immunochromatographic tests for malaria are liable to several drawbacks, including inadequate sensitivity and false-positive outcomes. Alternative methods that offer improvements in performance are either expensive, have longer turnaround time or require a level of expertise that makes them unsuitable for point-of-care (POC) applications. These gaps necessitate exploration of more efficient detection techniques with the potential of POC applications, especially in resource-limited settings. This minireview discusses some of the recent trends and new approaches that are seeking to improve the clinical diagnosis of malaria

    Development of an amperometric screen-printed galactose biosensor for serum analysis

    No full text
    The development of a disposable amperometric biosensor for the measurement of circulating galactose in serum is described. The biosensor comprises a screen-printed carbon electrode (SPCE), incorporating the electrocatalyst cobalt phthalocyanine (CoPC), which is covered by a permselective cellulose acetate (CA) membrane and a layer of immobilized galactose oxidase (GALOX). The optimal response of the biosensor, designated as GALOX-CA-CoPC-SPCE, was obtained by systematically examining the effects of enzyme loading, temperature, pH, and buffer strength. The optimal performance of the biosensor occurred with 2 U of GALOX, at 35 °C, using 50 mM phosphate buffer solution (pH 7.0). The sensitivity was 7.00 μA mM-1 cm-2 and the linear range from 0.1 to 25 mM with a calculated limit of detection (LOD) of 0.02 mM; this concentration range and LOD are appropriate to diagnose galactosemia, i.e., concentrations >1.1 mM in infants. When the biosensor was used in conjunction with amperometry in stirred solution for the analysis of serum, the precision values obtained on unspiked (endogenous level of 0.153 mM) and spiked serum (1 mM added) (n = 6) were 1.10% and 0.11%, respectively, with a calculated recovery of 99.9%. © 2013 Elsevier Inc. All rights reserved
    corecore