193 research outputs found

    Automatic phase control in solar power satellite systems

    Get PDF
    Various approaches to the problem of generating, maintaining and distributing a coherent, reference phase signal over a large area are suggested, mathematically modeled and analyzed with respect to their ability to minimize: phase build-up, beam diffusion and beam steering phase jitter, cable length, and maximize power transfer efficiency. In addition, phase control configurations are suggested which alleviate the need for layout symmetry

    Analytical simulation of SPS system performance, volume 3, phase 3

    Get PDF
    The simulation model for the Solar Power Satellite spaceantenna and the associated system imperfections are described. Overall power transfer efficiency, the key performance issue, is discussed as a function of the system imperfections. Other system performance measures discussed include average power pattern, mean beam gain reduction, and pointing error

    Solar Power Satellite antenna phase control system hardware simulation, phase 4: Volume 1: Executive summary

    Get PDF
    The phase control system is described. Potential sources of phase error are identified and the performance leading to selection of the allowable phase error for each source is summarized. The pilot transmitter, the effects of ionospheric, the master slave returnable timing system (MSRTS), the SPS receiver, and the high power amplifier for dc to microwave conversion are considered separately. Design parameters of the pilot transmitter and spacetenna transponder are presented

    Solar Power Satellite antenna phase control system hardware simulation, phase 4. Volume 2: Analytical simulation of SPS system performance

    Get PDF
    The pilot signal parameter optimization and power transponder analyses are presented. The SPS antenna phase control system is modeled and the hardware simulation study described. Ionospheric and system phase error effects and the effects of high power amplifier phase and amplitude jitters are considered. Parameter optimization of the spread spectrum receiver, consisting of the carrier tracking loop and the code tracking loop, is described

    SPS phase control system performance via analytical simulation

    Get PDF
    A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems

    Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation

    Get PDF
    Motivated reward-seeking behaviours are governed by dopaminergic ventral tegmental area projections to the nucleus accumbens. In addition to dopamine, these mesoaccumbal terminals co-release other neurotransmitters including glutamate and GABA, whose roles in regulating motivated behaviours are currently being investigated. Here we demonstrate that loss of the E3-ubiquitin ligase, UBE3A, from tyrosine hydroxylase-expressing neurons impairs mesoaccumbal, non-canonical GABA co-release and enhances reward-seeking behaviour measured by optical self-stimulation

    Solid stress facilitates spheroid formation: potential involvement of hyaluronan

    Get PDF
    When neoplastic cells grow in confined spaces in vivo, they exert a finite force on the surrounding tissue resulting in the generation of solid stress. By growing multicellular spheroids in agarose gels of defined mechanical properties, we have recently shown that solid stress inhibits the growth of spheroids and that this growth-inhibiting stress ranges from 45 to 120 mmHg. Here we show that solid stress facilitates the formation of spheroids in the highly metastatic Dunning R3327 rat prostate carcinoma AT3.1 cells, which predominantly do not grow as spheroids in free suspension. The maximum size and the growth rate of the resulting spheroids decreased with increasing stress. Relieving solid stress by enzymatic digestion of gels resulted in gradual loss of spheroidal morphology in 8 days. In contrast, the low metastatic variant AT2.1 cells, which grow as spheroids in free suspension as well as in the gels, maintained their spheroidal morphology even after stress removal. Histological examination revealed that most cells in AT2.1 spheroids are in close apposition whereas a regular matrix separates the cells in the AT3.1 gel spheroids. Staining with the hyaluronan binding protein revealed that the matrix between AT3.1 cells in agarose contained hyaluronan, while AT3.1 cells had negligible or no hyaluronan when grown in free suspension. Hyaluronan was found to be present in both free suspensions and agarose gel spheroids of AT2.1. We suggest that cell–cell adhesion may be adequate for spheroid formation, whereas solid stress may be required to form spheroids when cell–matrix adhesion is predominant. These findings have significant implications for tumour growth, invasion and metastasis

    Integrating data science into the translational science research spectrum: a substance use disorder case study

    Get PDF
    The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical discoveries (T0) directly to assessing population-level health impact (T4). A successful bridge from T0 to T4 does not bypass the other stages entirely; rather, effective team science makes a direct progression from T0 to T4 impactful by incorporating the perspectives of researchers from every stage of the clinical and translational science research spectrum. In this exemplar, we demonstrate how effective team science overcame challenges and, ultimately, ensured success when a diverse team of researchers worked together, using healthcare big data to test population-level substance use disorder (SUD) hypotheses generated from preclinical rodent studies. This project, called Advancing Substance use disorder Knowledge using Big Data (ASK Big Data), highlights the critical roles that data science expertise and effective team science play in quickly translating preclinical research into public health impact.Published versio

    Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area

    Get PDF
    The primary motor cortex (M1) is strongly influenced by several frontal regions. Dual-site transcranial magnetic stimulation (dsTMS) has highlighted the timing of early (<40 ms) prefrontal/premotor influences over M1. Here we used dsTMS to investigate, for the first time, longer-latency causal interactions of the posterior inferior frontal gyrus (pIFG) and pre-supplementary motor area (pre-SMA) with M1 at rest. A suprathreshold test stimulus (TS) was applied over M1 producing a motor-evoked potential (MEP) in the relaxed hand. Either a subthreshold or a suprathreshold conditioning stimulus (CS) was administered over ipsilateral pIFG/pre-SMA sites before the TS at different CS-TS inter-stimulus intervals (ISIs: 40-150 ms). Independently of intensity, CS over pIFG and pre-SMA (but not over a control site) inhibited MEPs at an ISI of 40 ms. The CS over pIFG produced a second peak of inhibition at an ISI of 150 ms. Additionally, facilitatory modulations were found at an ISI of 60 ms, with supra-but not subthreshold CS intensities. These findings suggest differential modulatory roles of pIFG and pre-SMA in M1 excitability. In particular, the pIFG-but not the pre-SMA-exerts intensity-dependent modulatory influences over M1 within the explored time window of 40-150 ms, evidencing fine-tuned control of M1 output
    corecore