14 research outputs found

    Rationale, design, and implementation protocol of an electronic health record integrated clinical prediction rule (iCPR) randomized trial in primary care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical prediction rules (CPRs) represent well-validated but underutilized evidence-based medicine tools at the point-of-care. To date, an inability to integrate these rules into an electronic health record (EHR) has been a major limitation and we are not aware of a study demonstrating the use of CPR's in an ambulatory EHR setting. The integrated clinical prediction rule (iCPR) trial integrates two CPR's in an EHR and assesses both the usability and the effect on evidence-based practice in the primary care setting.</p> <p>Methods</p> <p>A multi-disciplinary design team was assembled to develop a prototype iCPR for validated streptococcal pharyngitis and bacterial pneumonia CPRs. The iCPR tool was built as an active Clinical Decision Support (CDS) tool that can be triggered by user action during typical workflow. Using the EHR CDS toolkit, the iCPR risk score calculator was linked to tailored ordered sets, documentation, and patient instructions. The team subsequently conducted two levels of 'real world' usability testing with eight providers per group. Usability data were used to refine and create a production tool. Participating primary care providers (n = 149) were randomized and intervention providers were trained in the use of the new iCPR tool. Rates of iCPR tool triggering in the intervention and control (simulated) groups are monitored and subsequent use of the various components of the iCPR tool among intervention encounters is also tracked. The primary outcome is the difference in antibiotic prescribing rates (strep and pneumonia iCPR's encounters) and chest x-rays (pneumonia iCPR only) between intervention and control providers.</p> <p>Discussion</p> <p>Using iterative usability testing and development paired with provider training, the iCPR CDS tool leverages user-centered design principles to overcome pervasive underutilization of EBM and support evidence-based practice at the point-of-care. The ongoing trial will determine if this collaborative process will lead to higher rates of utilization and EBM guided use of antibiotics and chest x-ray's in primary care.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01386047">NCT01386047</a></p

    Multi-Institutional Implementation of Clinical Decision Support for APOL1, NAT2, and YEATS4 Genotyping in Antihypertensive Management

    Get PDF
    (1) Background: Clinical decision support (CDS) is a vitally important adjunct to the implementation of pharmacogenomic-guided prescribing in clinical practice. A novel CDS was sought for the APOL1, NAT2, and YEATS4 genes to guide optimal selection of antihypertensive medications among the African American population cared for at multiple participating institutions in a clinical trial. (2) Methods: The CDS committee, made up of clinical content and CDS experts, developed a framework and contributed to the creation of the CDS using the following guiding principles: 1. medical algorithm consensus; 2. actionability; 3. context-sensitive triggers; 4. workflow integration; 5. feasibility; 6. interpretability; 7. portability; and 8. discrete reporting of lab results. (3) Results: Utilizing the principle of discrete patient laboratory and vital information, a novel CDS for APOL1, NAT2, and YEATS4 was created for use in a multi-institutional trial based on a medical algorithm consensus. The alerts are actionable and easily interpretable, clearly displaying the purpose and recommendations with pertinent laboratory results, vitals and links to ordersets with suggested antihypertensive dosages. Alerts were either triggered immediately once a provider starts to order relevant antihypertensive agents or strategically placed in workflow-appropriate general CDS sections in the electronic health record (EHR). Detailed implementation instructions were shared across institutions to achieve maximum portability. (4) Conclusions: Using sound principles, the created genetic algorithms were applied across multiple institutions. The framework outlined in this study should apply to other disease-gene and pharmacogenomic projects employing CDS

    Establishing the value of genomics in medicine: the IGNITE Pragmatic Trials Network.

    Get PDF
    PURPOSE: A critical gap in the adoption of genomic medicine into medical practice is the need for the rigorous evaluation of the utility of genomic medicine interventions. METHODS: The Implementing Genomics in Practice Pragmatic Trials Network (IGNITE PTN) was formed in 2018 to measure the clinical utility and cost-effectiveness of genomic medicine interventions, to assess approaches for real-world application of genomic medicine in diverse clinical settings, and to produce generalizable knowledge on clinical trials using genomic interventions. Five clinical sites and a coordinating center evaluated trial proposals and developed working groups to enable their implementation. RESULTS: Two pragmatic clinical trials (PCTs) have been initiated, one evaluating genetic risk APOL1 variants in African Americans in the management of their hypertension, and the other to evaluate the use of pharmacogenetic testing for medications to manage acute and chronic pain as well as depression. CONCLUSION: IGNITE PTN is a network that carries out PCTs in genomic medicine; it is focused on diversity and inclusion of underrepresented minority trial participants; it uses electronic health records and clinical decision support to deliver the interventions. IGNITE PTN will develop the evidence to support (or oppose) the adoption of genomic medicine interventions by patients, providers, and payers

    Implementing a pragmatic clinical trial to tailor opioids for acute pain on behalf of the IGNITE ADOPT PGx investigators.

    Get PDF
    Opioid prescribing for postoperative pain management is challenging because of inter-patient variability in opioid response and concern about opioid addiction. Tramadol, hydrocodone, and codeine depend on the cytochrome P450 2D6 (CYP2D6) enzyme for formation of highly potent metabolites. Individuals with reduced or absent CYP2D6 activity (i.e., intermediate metabolizers [IMs] or poor metabolizers [PMs], respectively) have lower concentrations of potent opioid metabolites and potentially inadequate pain control. The primary objective of this prospective, multicenter, randomized pragmatic trial is to determine the effect of postoperative CYP2D6-guided opioid prescribing on pain control and opioid usage. Up to 2020 participants, age ≥8 years, scheduled to undergo a surgical procedure will be enrolled and randomized to immediate pharmacogenetic testing with clinical decision support (CDS) for CYP2D6 phenotype-guided postoperative pain management (intervention arm) or delayed testing without CDS (control arm). CDS is provided through medical record alerts and/or a pharmacist consult note. For IMs and PM in the intervention arm, CDS includes recommendations to avoid hydrocodone, tramadol, and codeine. Patient-reported pain-related outcomes are collected 10 days and 1, 3, and 6 months after surgery. The primary outcome, a composite of pain intensity and opioid usage at 10 days postsurgery, will be compared in the subgroup of IMs and PMs in the intervention (n = 152) versus the control (n = 152) arm. Secondary end points include prescription pain medication misuse scores and opioid persistence at 6 months. This trial will provide data on the clinical utility of CYP2D6 phenotype-guided opioid selection for improving postoperative pain control and reducing opioid-related risks

    Defining AMIA\u27s artificial intelligence principles

    No full text
    Recent advances in the science and technology of artificial intelligence (AI) and growing numbers of deployed AI systems in healthcare and other services have called attention to the need for ethical principles and governance. We define and provide a rationale for principles that should guide the commission, creation, implementation, maintenance, and retirement of AI systems as a foundation for governance throughout the lifecycle. Some principles are derived from the familiar requirements of practice and research in medicine and healthcare: beneficence, nonmaleficence, autonomy, and justice come first. A set of principles follow from the creation and engineering of AI systems: explainability of the technology in plain terms; interpretability, that is, plausible reasoning for decisions; fairness and absence of bias; dependability, including safe failure ; provision of an audit trail for decisions; and active management of the knowledge base to remain up to date and sensitive to any changes in the environment. In organizational terms, the principles require benevolence-aiming to do good through the use of AI; transparency, ensuring that all assumptions and potential conflicts of interest are declared; and accountability, including active oversight of AI systems and management of any risks that may arise. Particular attention is drawn to the case of vulnerable populations, where extreme care must be exercised. Finally, the principles emphasize the need for user education at all levels of engagement with AI and for continuing research into AI and its biomedical and healthcare applications

    Physician Attitudes toward Adopting Genome-Guided Prescribing through Clinical Decision Support

    No full text
    This study assessed physician attitudes toward adopting genome-guided prescribing through clinical decision support (CDS), prior to enlisting in the Clinical Implementation of Personalized Medicine through Electronic Health Records and Genomics pilot pharmacogenomics project (CLIPMERGE PGx). We developed a survey instrument that includes the Evidence Based Practice Attitude Scale, adapted to measure attitudes toward adopting genome-informed interventions (EBPAS-GII). The survey also includes items to measure physicians’ characteristics (awareness, experience, and perceived usefulness), attitudes about personal genome testing (PGT) services, and comfort using technology. We surveyed 101 General Internal Medicine physicians from the Icahn School of Medicine at Mount Sinai (ISMMS). The majority were residency program trainees (~88%). Prior to enlisting into CLIPMERGE PGx, most physicians were aware of and had used decision support aids. Few physicians, however, were aware of and had used genome-guided prescribing. The majority of physicians viewed decision support aids and genotype data as being useful for making prescribing decisions. Most physicians had not heard of, but were willing to use, PGT services and felt comfortable interpreting PGT results. Most physicians were comfortable with technology. Physicians who perceived genotype data to be useful in making prescribing decisions, had more positive attitudes toward adopting genome-guided prescribing through CDS. Our findings suggest that internal medicine physicians have a deficit in their familiarity and comfort interpreting and using genomic information. This has reinforced the importance of gathering feedback and guidance from our enrolled physicians when designing genome-guided CDS and the importance of prioritizing genomic medicine education at our institutions

    石墨烯及其制备方法、超级电容器

    No full text
    本发明提供了一种石墨烯及其制备方法,该方法先将膨胀石墨进行球磨,得到纳米石墨片;然后氧化,得到部分氧化的石墨烯;再与第一活化剂混合,加热进行第一次造孔得到微孔石墨烯;最后与第二活化剂混合,加热进行第二次造孔得到石墨烯。与现有技术相比,本发明以膨胀石墨烯为原料,经过弱氧化及两次造孔处理,得到具有中孔结构的石墨烯。首先,本发明以膨胀石墨为原料,经球磨处理分散均匀,得到具有更薄片层结构的纳米石墨片,对其进行膨胀造孔,从而使最终得到的石墨烯具有三维片层结构及中孔结构,使其具有较高的比表面积;其次,对纳米石墨片进行弱氧化处理,使制备得到的石墨烯具有短程有序,长程无序结构,从宏观上具备较高的振实密度
    corecore