20 research outputs found
Recommended from our members
Evidence for the In‐Situ Generation of Plasma Depletion Structures Over the Transition Region of Geomagnetic Low‐Mid Latitude
On a geomagnetic quiet night of October 29, 2018, we captured an observational evidence of the onset of dark band structures within the field-of-view of an all-sky airglow imager operating at 630.0 nm over a geomagnetic low-mid latitude transition region, Hanle, Leh Ladakh. Simultaneous ionosonde observations over New Delhi shows the occurrence of spread-F in the ionograms. Additionally, virtual and peak height indicate vertical upliftment in the F layer altitude and reduction in the ionospheric peak frequency were also observed when the dark band pass through the ionosonde location. All these results confirmed that the observed depletions are indeed associated with ionospheric F region plasma irregularities. The rate of total electron content index (ROTI) indicates the absence of plasma bubble activities over the equatorial/low latitude region which confirms that the observed event is a mid-latitude plasma depletion. Our calculations reveal that the growth time of the plasma depletion is ∼2 h if one considers only the Perkins instability mechanism. This is not consistent with the present observations as the plasma depletion developed within ∼25 min. By invoking possible Es layer instabilities and associated E-F region coupling, we show that the growth rate increases roughly by an order of magnitude. This strongly suggests that the Cosgrove and Tsunoda mechanism may be simultaneously operational in this case. Furthermore, it is also suggested that reduced F region flux-tube integrated conductivity in the southern part of onset region created conducive background conditions for the growth of the plasma depletion on this night
Screening and partial purification of photoprotective pigment scytonemin from cyanobacterial crusts dwelling on the historical monuments in and around Varanasi, India
In the present investigation, biological crusts from the surface of eight historical monuments of Varanasi, India, were examined for the presence of scytonemin (a cyanobacterial photoprotective pigment) containing cyanobacterial species. Lyngbya sp. and Scytonema sp. were the dominant cyanobacteria present in all crust samples. The absorption spectroscopic data of chlorophyll, carotenoids and scytonemin showed that scytonemin was more abundant than the carotene and chlorophyll in all the crusts. Identification of these compounds was done using UV-Vis spectroscopy and High Performance Liquid Chromatography (HPLC) analysis. HPLC analysis revealed the presence of scytonemin in seven out of eight samples and peaks of scytonemin with retention time ranging from 1.4-1.9 min with corresponding absorbance maxima at 386, 300 and 252±2 nm. As per our knowledge this is the first report of its kind from monuments of Varanasi. From this study, it can be concluded that synthesis of photoprotective compounds like scytonemin and its derivatives counteract the damaging effects of solar radiation which enable cyanobacteria to colonize and inhabit almost all kinds of habitats, including extreme lithic habitats, such as rocks and walls of monuments which face prolonged high intensity solar radiation
Effect of compartmentalization of donor and acceptor on the ultrafast resonance energy transfer from DAPI to silver nanoclusters
The mechanism and dynamics of excitation energy transfer (EET) from photo-excited 4',6-diamidino-2-phenylindole (DAPI) to silver nanoclusters (Ag NCs) and its subsequent modulation in the presence of cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and Calf Thymus DNA (CT-DNA) have been demonstrated using steady-state fluorescence and femtosecond fluorescence upconversion techniques. The synthesized Ag NCs were characterized using FTIR, mass spectrometry, XPS, HRTEM, DLS, UV-Vis and PL spectroscopy. Mass spectrometric analysis reveals the formation of ultrasmall Ag4 NCs with a small amount of Ag-5 NCs. UV-Vis and PL spectra reveal distinct molecular-like optoelectronic behaviour of these ultrasmall Ag NCs. The dihydrolipoic acid-capped Ag NCs strongly quench the fluorescence of DAPI with concomitant increase in its photoluminescence (PL) intensity at 675 nm. This steady-state fluorescence quenching proceeds with a significant shortening of the fluorescence lifetime of DAPI in the presence of Ag NCs, signifying the nonradiative Forster resonance energy transfer (FRET) from DAPI to Ag NCs. Various energy transfer parameters have been estimated from FRET theory. The present FRET pair shows a characteristic Forster distance of 2.45 nm and can be utilized as a reporter of short-range distances in various FRET based applications. Moreover, this nonradiative FRET is completely suppressed in the presence of both 0.2 wt% PDADMAC and CT-DNA. Our results reveal selective compartmentalization of Ag NCs and DAPI in the presence of 0.2 wt% PDADMAC and CT-DNA, respectively. This selective compartmentalization of donor and acceptor and the subsequent modification of the FRET process may find application in various sensing, photovoltaic, and light harvesting applications
Quantification of groundwater storage variation in Himalayan & Peninsular river basins correlating with land deformation effects observed at different Indian cities
Groundwater is a significant resource that supports almost one-fifth population globally, but has been is diminishing at an alarming rate in recent years. To delve into this objective more thoroughly, we calculated interannual (2002–2020) GWS (per grid) distribution using GRACE & GRACE-FO (CSR-M, JPL-M and SH) Level 3 RL06 datasets in seven Indian river basins and found comparatively higher negative trends (-20.10 ± 1.81 to -8.60 ± 1.52 mm/yr) in Basin 1–4 than in Basin 5–7 (-7.11 ± 0.64 to -0.76 ± 0.47 mm/yr). After comparing the Groundwater Storage (GWS) results with the CHIRPS (Climate Hazards Group Infrared Precipitation with Stations) derived SPI (Standardized Precipitation Index) drought index, we found that GWS exhausts analogously in the same period (2005–2020) when SPI values show improvement (~ 1.89–2), indicating towards wet condition. Subsequently, the GWSA time series is decomposed using the STL (Seasonal Trend Decomposition) (LOESS Regression) approach to monitor long-term groundwater fluctuation. The long term GWS rate (mm/yr) derived from three GRACE & GRACE-FO solutions vary from -20.3 ± 5.52 to -13.19 ± 3.28 and the GWS mass rate (km3 /yr) lie in range of -15.17 ± 4.18 to -1.67 ± 0.49 for basins 1–3. Simultaneously, in basin 4–7 the GWS rate observed is -8.56 ± 8.03 to -0.58 ± 7.04 mm/yr, and the GWS mass rate differs by -1.71 ± 0.64 to -0.26 ± 3.19 km3 /yr. The deseasonalized GWS estimation (2002–2020) states that Himalayan River basins 1,2,3 exhibit high GWS mass loss (-260 to -35.12 km3 ), with Basin 2 being the highest (-260 km3 ). Whereas the Peninsular River basin 4,6,7 gives moderate mass loss value from -26.72 to -23.58 km3 . And in River basin 5, the GWS mass loss observed is the lowest, with a value of -8 km3 . Accordingly, GPS (Global Positioning System) and SAR (Synthetic Aperture Radar) data are considered to examine the land deformation as an effect due to GWS mass loss. The GPS data acquired from two IGS stations, IISC Bengaluru and LCK3 Lucknow, negatively correlates with GWS change, and the values are ~ -0.90 to ~-0.21 and ~-0.7 to -0.4, respectively. Consequently, correlation between GWS mass rate (km3 /yr) and the SAR (Sentinel-1A, SBAS) data procured from Chandigarh, Delhi, Mehsana, Lucknow, Kolkata and Bengaluru shows ~ 72 – 48% positively correlated area (PCA). The vertical velocity ranges within ~ -94 to -25 mm/yr estimated from PCA. There is an increase in population (estimated 2008–2014) in Basin 1 & 2. Likewise, the correlation coefficient ( ) between GWS change and the irrigational area is positive in all seven basins indicating significant depletion in GWS due to an uncalled hike in population or irrigational land use. Similarly, the positive linear regression (R 2 ) in Basins 1–3 also indicates high depletion in GWS. But basins 4–7 observe negative linear regression even after increasing population, which implies a control on the irrigational land use, unable to determine the GWS change at local scale and heterogeneous aquifer distribution. Therefore, if such unsystematic groundwater storage variation is not controlled on time, then very soon in the future, India might reach a deadlock state of water shortage
Synthesis and photophysical properties of star-shaped blue green emitting pi-conjugated spirotruxenes
Here, we report a simple and useful strategy for a series of C-3-symmetric pi-conjugated and highly soluble spiro-annulated truxene derivatives. The role of substituent at C5, C10, C15, C2, C7, and C12 positions was studied. We observed that truxenes containing carbonyl groups showed red shift in the absorption maxima in comparison with compounds devoid of carbonyl group. Enhanced conjugation in these systems may be responsible for this red shift. It was observed that truxene derivatives with carbonyl moiety exhibited faster decay than other derivatives. Benzyl groups play some role in the excited state dynamics as decay becomes slower when the spiro moiety was replaced by benzyl group at C5, C10, and C15 positions. Additionally, we noticed the highest quantum yield in t-butanol solvent and least in acetonitrile. (C) 2018 Published by Elsevier Ltd
Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2
In the present study we have made an attempt to develop an eco-friendly, cheap and convenient biological (green) method for the synthesis of silver nanoparticles (AgNPs) using the cell extract of the cyanobacterium Nostoc sp. strain HKAR-2. Their anticancerous, antifungal and antibacterial properties were also studied against MCF-7 cells, two fungal strains (Aspergillus niger and Trichoderma harzianum) and two plant bacterial strains (Ralstonia solanacearum and Xanthomonas campestris), respectively. The structural, morphological and optical properties of green synthesized AgNPs were determined by UV-VIS spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, transmission electron microscopy selected area electron diffraction (TEM-SAED) and scanning electron microscopy (SEM). Spectroscopic analysis showed the peak at 419 nm due to the reduction of AgNO3 into silver ion by cyanobacterial extract indicating surface plasmon resonance (SPR) of the synthesized AgNPs. The XRD pattern of AgNPs showed the characteristic Bragg peaks at (111), (200), (220) and (311) facets of the face centre cubic (fcc) confirming their crystalline nature. FTIR analysis revealed that proteins and amino acids are responsible for the reduction of AgNO3 into Ag+ as well as for the stability of nanoparticles. Zeta potential confirmed that the charge on the nanoparticles is 1.80 mV which indicates the presence of stable nanoparticles. The results of SEM and TEM confirmed the large agglomerated shape of AgNPs with size ranging between 51-100 nm. The AgNPs showed a dose-dependent cytotoxic activity against human breast cancer MCF-7 cells with IC50 of 27.5 µg/ml. They also exhibited excellent antibacterial and antifungal activities
Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives.
MicroRNAs (miRNAs) play a fundamental role in the developmental and physiological processes that occur in both animals and plants. AntagomiRs are synthetic antagonists of miRNA, prevent the target mRNA from suppression. Therapeutic approaches that modulate miRNAs have immense potential in the treatment of chronic respiratory disorders. However, the successful delivery of miRNAs/antagomiRs to the lungs remains a major challenge in clinical applications. A range of materials, namely, polymer nanoparticles, lipid nanocapsules and inorganic nanoparticles have shown promising results for intracellular delivery of miRNA in chronic respiratory disorders. This review discusses the current understanding of miRNA biology, the biological roles of antagomiRs in chronic respiratory disease and the recent advances in the therapeutic utilization of antagomiRs as disease biomarkers. Furthermore our review provides a common platform to debate on the nature of antagomiRs and also address the viewpoint on the new generation of delivery systems that target antagomiRs in respiratory diseases
Exploring the anti-inflammatory and anti-fibrotic activity of NFκB decoy oligodeoxynucleotide-loaded spermine-functionalized acetalated nanoparticles
Chronic inflammation, oxidative stress, and airway remodelling represent the principal pathophysiological features of chronic respiratory disorders. Inflammation stimuli like lipopolysaccharide (LPS) activate macrophages and dendritic cells, with concomitant M1 polarization and release of pro-inflammatory cytokines. Chronic inflammation and oxidative stress lead to airway remodelling causing irreversible functional and structural alterations of the lungs. Airway remodelling is multifactorial, however, the hormone transforming growth factor-β (TGF-β) is one of the main contributors to fibrotic changes. The signalling pathways mediating inflammation and remodelling rely both on the transcription factor nuclear factor-κB (NFκB), underlying the potential of NFκB inhibition as a therapeutic strategy for chronic respiratory disorders. In this study, we encapsulated an NFκB-inhibiting decoy oligodeoxynucleotide (ODN) in spermine-functionalized acetalated dextran (SpAcDex) nanoparticles and tested the in vitro anti-inflammatory and anti-remodelling activity of this formulation. We show that NF-κB ODN nanoparticles counteract inflammation by reversing LPS-induced expression of the activation marker CD40 in myeloid cells and counteracts remodelling features by reversing the TGF-β-induced expression of collagen I and α-smooth muscle actin in human dermal fibroblast. In summary, our study highlights the great potential of inhibiting NFκB via decoy ODN as a therapeutic strategy tackling multiple pathophysiological features underlying chronic respiratory conditions