10 research outputs found

    Screening the medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum aminopeptidases, M1, M17 and M18

    Get PDF
    Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial ac- tivity, but not necessarily the molecular targets. In this study, we assess the ability of the “MMV 400” compounds to inhibit the activity of three metalloaminopeptidases from Plasmo- dium falciparum, PfA-M1, PfA-M17 and PfM18 AAP. We have developed a multiplex assay system to allow rapid primary screening of compounds against all three metalloaminopepti- dases, followed by detailed analysis of promising compounds. Our results show that there were no PfM18AAP inhibitors, whereas two moderate inhibitors of the neutral aminopepti- dases PfA-M1 and PfA-M17 were identified. Further investigation through structure-activity relationship studies and molecular docking suggest that these compounds are competitive inhibitors with novel binding mechanisms, acting through either non-classical zinc coordina- tion or independently of zinc binding altogether. Although it is unlikely that inhibition of PfA- M1 and/or PfA-M17 is the primary mechanism responsible for the antiplasmodial activity re- ported for these compounds, their detailed characterization, as presented in this work, pave the way for their further optimization as a novel class of dual PfA-M1/PfA-M17 inhibitors uti- lising non-classical zinc binding groups

    Clinical-radiological features and diagnostic modalities for mediastinal melioidosis

    Get PDF
    Melioidosis is a potentially life-threatening infection caused by the Gram-negative bacillus Burkholderia pseudomallei. Mediastinal melioidosis has a range of clinical presentations, making it difficult to diagnose: we therefore reviewed the evidence on the clinical characteristics, radiological features and invasive diagnostic modalities or interventions. An electronic search was conducted on three databases (PubMed, SCOPUS, Google Scholar) from November to December 2022. The initial search yielded 120 results, of which 34 studies met the inclusion criteria, but only 31 full-texts were retrievable. Among these, 4 were cohort studies, 26 case reports or series and 1 a conference abstract. The four main themes covered were mediastinal melioidosis as a diagnostic dilemma, unexpected complications, invasive interventions or an accompanying thoracic feature. Radiological manifestations included matting, necrosis and abscess-like collection. Severe presentations of mediastinal melioidosis included superior vena cava obstruction, sinus tract formation and pericardial tamponade. Transbronchial needle aspiration was the most common invasive diagnostic modality. Further research is needed to understand the relationship between the thoracic features of melioidosis on patient prognosis, its relationship to melioidosis transmission and potential preventive measures

    Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors

    Get PDF
    Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics

    Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from plasmodium falciparum

    Full text link
    The malaria parasite Plasmodium falciparum employs two metallo- aminopeptidases, PfA-M1 and PfA-M17, which are essential for parasite survival. Compounds that inhibit the activity of either enzyme represent leads for the development of new antimalarial drugs. Here we report the synthesis and structure-activity relationships of a small library of phosphonic acid arginine mimetics that probe the S1 pocket of both enzymes and map the necessary interactions that would be important for a dual inhibitor. © 2013 American Chemical Society

    Prospects of practical application of hybrid membranes

    No full text
    corecore