45 research outputs found

    Pregnancy outcomes and risk of placental malaria after artemisinin-based and quinine-based treatment for uncomplicated falciparum malaria in pregnancy: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis.

    Get PDF
    BACKGROUND: Malaria in pregnancy, including asymptomatic infection, has a detrimental impact on foetal development. Individual patient data (IPD) meta-analysis was conducted to compare the association between antimalarial treatments and adverse pregnancy outcomes, including placental malaria, accompanied with the gestational age at diagnosis of uncomplicated falciparum malaria infection. METHODS: A systematic review and one-stage IPD meta-analysis of studies assessing the efficacy of artemisinin-based and quinine-based treatments for patent microscopic uncomplicated falciparum malaria infection (hereinafter uncomplicated falciparum malaria) in pregnancy was conducted. The risks of stillbirth (pregnancy loss at ≥ 28.0 weeks of gestation), moderate to late preterm birth (PTB, live birth between 32.0 and < 37.0 weeks), small for gestational age (SGA, birthweight of < 10th percentile), and placental malaria (defined as deposition of malaria pigment in the placenta with or without parasites) after different treatments of uncomplicated falciparum malaria were assessed by mixed-effects logistic regression, using artemether-lumefantrine, the most used antimalarial, as the reference standard. Registration PROSPERO: CRD42018104013. RESULTS: Of the 22 eligible studies (n = 5015), IPD from16 studies were shared, representing 95.0% (n = 4765) of the women enrolled in literature. Malaria treatment in this pooled analysis mostly occurred in the second (68.4%, 3064/4501) or third trimester (31.6%, 1421/4501), with gestational age confirmed by ultrasound in 91.5% (4120/4503). Quinine (n = 184) and five commonly used artemisinin-based combination therapies (ACTs) were included: artemether-lumefantrine (n = 1087), artesunate-amodiaquine (n = 775), artesunate-mefloquine (n = 965), and dihydroartemisinin-piperaquine (n = 837). The overall pooled proportion of stillbirth was 1.1% (84/4361), PTB 10.0% (619/4131), SGA 32.3% (1007/3707), and placental malaria 80.1% (2543/3035), and there were no significant differences of considered outcomes by ACT. Higher parasitaemia before treatment was associated with a higher risk of SGA (adjusted odds ratio [aOR] 1.14 per 10-fold increase, 95% confidence interval [CI] 1.03 to 1.26, p = 0.009) and deposition of malaria pigment in the placenta (aOR 1.67 per 10-fold increase, 95% CI 1.42 to 1.96, p < 0.001). CONCLUSIONS: The risks of stillbirth, PTB, SGA, and placental malaria were not different between the commonly used ACTs. The risk of SGA was high among pregnant women infected with falciparum malaria despite treatment with highly effective drugs. Reduction of malaria-associated adverse birth outcomes requires effective prevention in pregnant women

    Roles of Small GTPase Rac1 in the Regulation of Actin Cytoskeleton during Dengue Virus Infection

    Get PDF
    An important clinical characteristic of dengue hemorrhagic fever/dengue shock syndrome is increased vascular permeability. Actin cytoskeleton is a significant element of endothelial barrier function regulation. In vitro study showed that dengue virus infection could induce redistributions of actin cytoskeleton. It is not precisely clear the roles of actin and the mechanisms of its reorganization during the infection. Using immunochemical assays, drug inhibition assays and protein interaction profiling methods, we aimed to identify the ways in which dengue virus serotype 2 interacts with actin cytoskeleton. The study showed that dynamic treadmilling of actin is necessary for dengue virus entry, production and release, while small GTPase Rac1 also plays multiple roles during these processes. In addition, we demonstrated the association of viral E protein with actin, indicating a direct effect of viral protein on the structural modifications of actin cytoskeleton. Our results provide evidence for the participation of Rac1 signaling pathways in viral protein-induced actin reorganizations, which may be a mechanism involved in the etiology of dengue hemorrhagic fever

    Absence of association between Plasmodium falciparum small sub-unit ribosomal RNA gene mutations and in vitro decreased susceptibility to doxycycline

    Get PDF
    BACKGROUND: Doxycycline is an antibiotic used in combination with quinine or artesunate for malaria treatment or alone for malaria chemoprophylaxis. Recently, one prophylactic failure has been reported, and several studies have highlighted in vitro doxycycline decreased susceptibility in Plasmodium falciparum isolates from different areas. The genetic markers that contribute to detecting and monitoring the susceptibility of P. falciparum to doxycycline, the pfmdt and pftetQ genes, have recently been identified. However, these markers are not sufficient to explain in vitro decreased susceptibility of P. falciparum to doxycycline. In this paper, the association between polymorphism of the small sub-unit ribosomal RNA apicoplastic gene pfssrRNA (PFC10_API0057) and in vitro susceptibilities of P. falciparum isolates to doxycycline were investigated. METHODS: Doxycycline IC50 determinations using the hypoxanthine uptake inhibition assay were performed on 178 African and Thai P. falciparum isolates. The polymorphism of pfssrRNA was investigated in these samples by standard PCR followed by sequencing. RESULTS: No point mutations were found in pfssrRNA in the Thai or African isolates, regardless of the determined IC50 values. CONCLUSIONS: The pfssrRNA gene is not associated with in vitro decreased susceptibility of P. falciparum to doxycycline. Identifying new in vitro molecular markers associated with reduced susceptibility is needed, to survey the emergence of doxycycline resistance

    Effective preparation of Plasmodium vivax field isolates for high-throughput whole genome sequencing.

    Get PDF
    Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read sequence of the target P. vivax DNA. Here, we discuss a methodology to significantly improve the success of P. vivax WGS on natural (non-adapted) patient isolates. Using 37 patient isolates from Indonesia, Thailand, and travellers, we assessed the application of CF11-based white blood cell filtration alone and in combination with short term ex vivo schizont maturation. Although CF11 filtration reduced human DNA contamination in 8 Indonesian isolates tested, additional short-term culture increased the P. vivax DNA yield from a median of 0.15 to 6.2 ng µl(-1) packed red blood cells (pRBCs) (p = 0.001) and reduced the human DNA percentage from a median of 33.9% to 6.22% (p = 0.008). Furthermore, post-CF11 and culture samples from Thailand gave a median P. vivax DNA yield of 2.34 ng µl(-1) pRBCs, and 2.65% human DNA. In 22 P. vivax patient isolates prepared with the 2-step method, we demonstrate high depth (median 654X coverage) and breadth (≥89%) of coverage on the Illumina GAII and HiSeq platforms. In contrast to the A+T-rich P. falciparum genome, negligible bias was observed in coverage depth between coding and non-coding regions of the P. vivax genome. This uniform coverage will greatly facilitate the detection of SNPs and copy number variants across the genome, enabling unbiased exploration of the natural diversity in P. vivax populations
    corecore