27 research outputs found

    Breaking the photoswitch speed limit

    Get PDF
    The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the “speed limit” of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material’s optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Parallel Sessions: Session 2

    No full text

    WNK pathways in cancer signaling networks

    No full text
    Abstract Background The with no lysine [K] (WNK) pathway consists of the structurally unique WNK kinases, their downstream target kinases, oxidative stress responsive (OSR)1 and SPS/Ste20-related proline-alanine-rich kinase (SPAK), and a multitude of OSR1/SPAK substrates including cation chloride cotransporters. Main body While the best known functions of the WNK pathway is regulation of ion transport across cell membranes, WNK pathway components have been implicated in numerous human diseases. The goal of our review is to draw attention to how this pathway and its components exert influence on the progression of cancer, specifically by detailing WNK signaling intersections with major cell communication networks and processes. Conclusion Here we describe how WNKs and associated proteins interact with and influence PI3K-AKT, TGF-ÎČ, and NF-ÎșB signaling, as well as its unanticipated role in the regulation of angiogenesis

    Coupled dynamics of axially functionally graded graphene nanoplatelets-reinforced viscoelastic shear deformable beams with material and geometric imperfections

    No full text
    This paper is the first to explore the coupled dynamics of geometrically and material-wise imperfect axially functionally graded (AFG) graphene nanoplatelets-reinforced viscoelastic third-order shear deformable beams. Four AFG graphene nanoplatelets distribution patterns are considered. Porosity, as the material imperfection, is modelled using a Gaussian Random Field model. Four thickness-wise functionally graded porosity distribution patterns are modelled. Effects of geometric imperfection are included by assigning an initial curvature to the beam. To consider the influences associated with energy dissipation caused by internal friction, the Kelvin-Voigt model for viscosity is used. External dissipative energy is modelled using a transverse damper. The effective material properties of the AFG beams are calculated using a modified Halpin-Tsai micromechanics model, together with a rule of mixture. Coupled axial, transverse, and rotational motion equations are obtained by employing a Hamiltonian approach and third-order shear deformation. The natural frequencies are obtained using a modal decomposition method. A simplified version of the graphene nanoplatelets-reinforced AFG structure is verified by a computer code-based finite element method. This novel study on the effects of geometrical imperfection on the sensitivity of beams towards porosity imperfections demonstrates the significance of scrutinising the effects of one imperfection on another
    corecore