14 research outputs found

    Towards microfluidic-based depletion of stiff and fragile human red cells that accumulate during blood storage

    No full text
    In this study, the effects of prolonged storage on several biophysical properties of red blood cells (RBCs) were investigated. Single cell deformability was used as an important criterion in determining subgroups of RBCs evolved during storage lesion. A deformability-based microfluidic cell sorting technology was applied, which demonstrates the ability to enrich and separate the less deformable subpopulations of stored blood. These less deformable RBC subpopulations were then associated with other important markers such as osmotic fragility indicating cell integrity as well as microparticle content. This work demonstrates a systematic methodology to both monitor and improve banked blood quality, thereby reducing risks related to blood transfusion.United States. Defense Advanced Research Projects Agency (N66001-11-1-4182

    Donor genetic and non-genetic factors affecting red blood cell transfusion effectiveness

    No full text
    BACKGROUNDRBC transfusion effectiveness varies due to donor, component, and recipient factors. Prior studies identified characteristics associated with variation in hemoglobin increments following transfusion. We extended these observations, examining donor genetic and nongenetic factors affecting transfusion effectiveness.METHODSThis is a multicenter retrospective study of 46,705 patients and 102,043 evaluable RBC transfusions from 2013 to 2016 across 12 hospitals. Transfusion effectiveness was defined as hemoglobin, bilirubin, or creatinine increments following single RBC unit transfusion. Models incorporated a subset of donors with data on single nucleotide polymorphisms associated with osmotic and oxidative hemolysis in vitro. Mixed modeling accounting for repeated transfusion episodes identified predictors of transfusion effectiveness.RESULTSBlood donor (sex, Rh status, fingerstick hemoglobin, smoking), component (storage duration, γ irradiation, leukoreduction, apheresis collection, storage solution), and recipient (sex, BMI, race and ethnicity, age) characteristics were associated with hemoglobin and bilirubin, but not creatinine, increments following RBC transfusions. Increased storage duration was associated with increased bilirubin and decreased hemoglobin increments, suggestive of in vivo hemolysis following transfusion. Donor G6PD deficiency and polymorphisms in SEC14L4, HBA2, and MYO9B genes were associated with decreased hemoglobin increments. Donor G6PD deficiency and polymorphisms in SEC14L4 were associated with increased transfusion requirements in the subsequent 48 hours.CONCLUSIONDonor genetic and other factors, such as RBC storage duration, affect transfusion effectiveness as defined by decreased hemoglobin or increased bilirubin increments. Addressing these factors will provide a precision medicine approach to improve patient outcomes, particularly for chronically transfused RBC recipients, who would most benefit from more effective transfusion products.FUNDINGFunding was provided by HHSN 75N92019D00032, HHSN 75N92019D00034, 75N92019D00035, HHSN 75N92019D00036, and HHSN 75N92019D00037; R01HL126130; and the National Institute of Child Health and Human Development (NICHD)

    Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion

    No full text
    Bacground-: Intravascular red cell hemolysis impairs nitric oxide (NO)-redox homeostasis, producing endothelial dysfunction, platelet activation, and vasculopathy. Red blood cell storage under standard conditions results in reduced integrity of the erythrocyte membrane, with formation of exocytic microvesicles or microparticles and hemolysis, which we hypothesized could impair vascular function and contribute to the putative storage lesion of banked blood. METHODS AND RESULTS-: We now find that s
    corecore