2 research outputs found

    Performance of a 3D convolutional neural network in the detection of hypoperfusion at CT pulmonary angiography in patients with chronic pulmonary embolism : a feasibility study

    Get PDF
    Background Chronic pulmonary embolism (CPE) is a life-threatening disease easily misdiagnosed on computed tomography. We investigated a three-dimensional convolutional neural network (CNN) algorithm for detecting hypoperfusion in CPE from computed tomography pulmonary angiography (CTPA). Methods Preoperative CTPA of 25 patients with CPE and 25 without pulmonary embolism were selected. We applied a 48%-12%-40% training-validation-testing split (12 positive and 12 negative CTPA volumes for training, 3 positives and 3 negatives for validation, 10 positives and 10 negatives for testing). The median number of axial images per CTPA was 335 (min-max, 111-570). Expert manual segmentations were used as training and testing targets. The CNN output was compared to a method in which a Hounsfield unit (HU) threshold was used to detect hypoperfusion. Receiver operating characteristic area under the curve (AUC) and Matthew correlation coefficient (MCC) were calculated with their 95% confidence interval (CI). Results The predicted segmentations of CNN showed AUC 0.87 (95% CI 0.82-0.91), those of HU-threshold method 0.79 (95% CI 0.74-0.84). The optimal global threshold values were CNN output probability >= 0.37 andPeer reviewe

    Evaluation of a CTA-based convolutional neural network for infarct volume prediction in anterior cerebral circulation ischaemic stroke

    Get PDF
    Background Computed tomography angiography (CTA) imaging is needed in current guideline-based stroke diagnosis, and infarct core size is one factor in guiding treatment decisions. We studied the efficacy of a convolutional neural network (CNN) in final infarct volume prediction from CTA and compared the results to a CT perfusion (CTP)-based commercially available software (RAPID, iSchemaView). Methods We retrospectively selected 83 consecutive stroke cases treated with thrombolytic therapy or receiving supportive care that presented to Helsinki University Hospital between January 2018 and July 2019. We compared CNN-derived ischaemic lesion volumes to final infarct volumes that were manually segmented from follow-up CT and to CTP-RAPID ischaemic core volumes. Results An overall correlation of r = 0.83 was found between CNN outputs and final infarct volumes. The strongest correlation was found in a subgroup of patients that presented more than 9 h of symptom onset (r = 0.90). A good correlation was found between the CNN outputs and CTP-RAPID ischaemic core volumes (r = 0.89) and the CNN was able to classify patients for thrombolytic therapy or supportive care with a 1.00 sensitivity and 0.94 specificity. Conclusions A CTA-based CNN software can provide good infarct core volume estimates as observed in follow-up imaging studies. CNN-derived infarct volumes had a good correlation to CTP-RAPID ischaemic core volumes.Peer reviewe
    corecore