37,794 research outputs found

    Triple sign reversal of Hall effect in HgBa_{2}CaCu_{2}O_{6} thin films after heavy-ion irradiations

    Full text link
    Triple sign reversal in the mixed-state Hall effect has been observed for the first time in ion-irradiated HgBa_{2}CaCu_{2}O_{6} thin films. The negative dip at the third sign reversal is more pronounced for higher fields, which is opposite to the case of the first sign reversal near T_c in most high-T_c superconductors. These observations can be explained by a recent prediction in which the third sign reversal is attributed to the energy derivative of the density of states and to a temperature-dependent function related to the superconducting energy gap. These contributions prominently appear in cases where the mean free path is significantly decreased, such as our case of ion-irradiated thin films.Comment: 4 pages, 3 eps figures, submitted Phys. Rev. Let

    QCD evolution of naive-time-reversal-odd fragmentation functions

    Full text link
    We study QCD evolution equations of the first transverse-momentum-moment of the naive-time-reversal-odd fragmentation functions - the Collins function and the polarizing fragmentation function. We find for the Collins function case that the evolution kernel has a diagonal piece same as that for the transversity fragmentation function, while for the polarizing fragmentation function case this piece is the same as that for the unpolarized fragmentation function. Our results might have important implications in the current global analysis of spin asymmetries.Comment: 8 pages,4 figure

    CentralNet: a Multilayer Approach for Multimodal Fusion

    Full text link
    This paper proposes a novel multimodal fusion approach, aiming to produce best possible decisions by integrating information coming from multiple media. While most of the past multimodal approaches either work by projecting the features of different modalities into the same space, or by coordinating the representations of each modality through the use of constraints, our approach borrows from both visions. More specifically, assuming each modality can be processed by a separated deep convolutional network, allowing to take decisions independently from each modality, we introduce a central network linking the modality specific networks. This central network not only provides a common feature embedding but also regularizes the modality specific networks through the use of multi-task learning. The proposed approach is validated on 4 different computer vision tasks on which it consistently improves the accuracy of existing multimodal fusion approaches

    μτ\mu-\tau Symmetry and Radiatively Generated Leptogenesis

    Full text link
    We consider a μτ\mu-\tau symmetry in neutrino sectors realized at GUT scale in the context of a seesaw model. In our scenario, the exact μτ\mu-\tau symmetry realized in the basis where the charged lepton and heavy Majorana neutrino mass matrices are diagonal leads to vanishing lepton asymmetries. We find that, in the minimal supersymmetric extension of the seesaw model with large tanβ\tan\beta, the renormalization group (RG) evolution from GUT scale to seesaw scale can induce a successful leptogenesis even without introducing any symmetry breaking terms by hand, whereas such RG effects lead to tiny deviations of θ23\theta_{23} and θ13\theta_{13} from π/4\pi/4 and zero, respectively. It is shown that the right amount of the baryon asymmetry ηB\eta_B can be achieved via so-called resonant leptogenesis, which can be realized at rather low seesaw scale with large tanβ\tan\beta in our scenario so that the well-known gravitino problem is safely avoided.Comment: 17 pages, 5 figures. Published in PR

    Cholecystitis Without Gallstones

    Get PDF
    10.1155/1990/89848HPB Surgery2283-10
    corecore