55,446 research outputs found
Integral-method analysis for a hypersonic viscous shock layer with mass injection
Integral method analysis for hypersonic viscous shock layer with mass injectio
Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors
Electronic Raman scattering from high- and low-energy excitations was studied
as a function of temperature, extent of hole doping, and energy of the incident
photons in Bi_2Sr_2CaCu_2O_{8 \pm \delta} superconductors. For underdoped
superconductors, short range antiferromagnetic (AF) correlations were found to
persist with hole doping, and doped single holes were found to be incoherent in
the AF environment. Above the superconducting (SC) transition temperature T_c,
the system exhibits a sharp Raman resonance of B_{1g} symmetry and energy of 75
meV and a pseudogap for electron-hole excitations below 75 meV, a manifestation
of a partially coherent state forming from doped incoherent quasi particles.
The occupancy of the coherent state increases with cooling until phase ordering
at T_c produces a global SC state.Comment: 6 pages, 4 color figures, PDF forma
Origins of the Isospin Violation of Dark Matter Interactions
Light dark matter (DM) with a large DM-nucleon spin-independent cross section
and furthermore proper isospin violation (ISV) may provide
a way to understand the confusing DM direct detection results. Combing with the
stringent astrophysical and collider constraints, we systematically investigate
the origin of ISV first via general operator analyses and further via
specifying three kinds of (single) mediators: A light from chiral
, an approximate spectator Higgs doublet (It can explain the
anomaly simultaneously) and color triplets. In addition, although from an
exotic mixing with generating , we can combine it with
the conventional Higgs to achieve proper ISV. As a concrete example, we propose
the model where the charged light sneutrino is the inelastic
DM, which dominantly annihilates to light dark states such as with sub-GeV
mass. This model can address the recent GoGeNT annual modulation consistent
with other DM direct detection results and free of exclusions.Comment: References added and English greatly improve
Is the Number of Giant Arcs in LCDM Consistent With Observations?
We use high-resolution N-body simulations to study the galaxy-cluster
cross-sections and the abundance of giant arcs in the CDM model.
Clusters are selected from the simulations using the friends-of-friends method,
and their cross-sections for forming giant arcs are analyzed. The background
sources are assumed to follow a uniform ellipticity distribution from 0 to 0.5
and to have an area identical to a circular source with diameter 1\arcsec. We
find that the optical depth scales as the source redshift approximately as
\tau_{1''} = 2.25 \times 10^{-6}/[1+(\zs/3.14)^{-3.42}] (0.6<\zs<7). The
amplitude is about 50% higher for an effective source diameter of 0.5\arcsec.
The optimal lens redshift for giant arcs with the length-to-width ratio ()
larger than 10 increases from 0.3 for \zs=1, to 0.5 for \zs=2, and to
0.7-0.8 for \zs>3. The optical depth is sensitive to the source redshift, in
qualitative agreement with Wambsganss et al. (2004). However, our overall
optical depth appears to be only 10% to 70% of those from previous
studies. The differences can be mostly explained by different power spectrum
normalizations () used and different ways of determining the
ratio. Finite source size and ellipticity have modest effects on the optical
depth. We also found that the number of highly magnified (with magnification
) and ``undistorted'' images (with ) is comparable to the
number of giant arcs with and . We conclude that our
predicted rate of giant arcs may be lower than the observed rate, although the
precise `discrepancy' is still unclear due to uncertainties both in theory and
observations.Comment: Revised version after the referee's reports (32 pages,13figures). The
paper has been significantly revised with many additions. The new version
includes more detailed comparisons with previous studies, including the
effects of source size and ellipticity. New discussions about the redshift
distribution of lensing clusters and the width of giant arcs have been adde
Crystal Interpretation of Kerov-Kirillov-Reshetikhin Bijection II. Proof for sl_n Case
In proving the Fermionic formulae, combinatorial bijection called the
Kerov--Kirillov--Reshetikhin (KKR) bijection plays the central role. It is a
bijection between the set of highest paths and the set of rigged
configurations. In this paper, we give a proof of crystal theoretic
reformulation of the KKR bijection. It is the main claim of Part I
(math.QA/0601630) written by A. Kuniba, M. Okado, T. Takagi, Y. Yamada, and the
author. The proof is given by introducing a structure of affine combinatorial
matrices on rigged configurations.Comment: 45 pages, version for publication. Introduction revised, more
explanations added to the main tex
A Dynamic Programming Solution to Bounded Dejittering Problems
We propose a dynamic programming solution to image dejittering problems with
bounded displacements and obtain efficient algorithms for the removal of line
jitter, line pixel jitter, and pixel jitter.Comment: The final publication is available at link.springer.co
Box ball system associated with antisymmetric tensor crystals
A new box ball system associated with an antisymmetric tensor crystal of the
quantum affine algebra of type A is considered. This includes the so-called
colored box ball system with capacity 1 as the simplest case. Infinite number
of conserved quantities are constructed and the scattering rule of two olitons
are given explicitly.Comment: 15 page
Cost aspects of African agricultural research:
Spending per scientist declined precipitously within African agricultural R&D agencies over the past several decades. In 1991, average cost per researcher across 147 R&D agencies was 59,500 when measured in United States rather than international dollars — 34 percent below the corresponding 1961 figure. This trend reflects the rapid growth in numbers of scientific staff compared with the slow growth in funds to support them. Comparatively low, and often shrinking, real salaries per scientist are a factor too. African scientists were paid an average of US7,500 with fringe benefits included), while comparable average salaries for academic staff working in large public universities in the United States were 72,667 with fringe benefits included. The new, agency-level data reported in this paper reveal significant variation in the costs per scientist not apparent from the country averages. There were 67 agencies (46 percent) that spent less than 207,700 for the former, compared with around $104,600 for the latter (in 1985 international dollars). GDP per capita and various other unspecified, country-specific effects also accounted for much of the observed variation in costs per scientist.Research institutes., Research Economic aspects.,
- …