304 research outputs found

    Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    Get PDF
    We have used molecular dynamics simulations to investigate interaction of H2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg^-1. On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K

    The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development

    Get PDF
    We present a new reactive force field ReaxFFHBN derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFFHBN has been tested against quantum calculation data for B–H, B–B, and B–N bond dissociations and for H–B–H, B–N–B, and N–B–N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFFHBN for B–N–H systems is also tested for (i) H–B and H–B bond energies as a function of out of plane in H–B(NH2)3 and H–N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFFHBN gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFFHBN is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms

    Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption

    Get PDF
    Collision and adsorption of hydrogen with high incident kinetic energies on a single-walled boron nitride (BN) nanotube have been investigated. Molecular-dynamics (MD) simulations indicate that at incident energies below 14 eV hydrogen bounces off the BN nanotube wall. On the other hand, at incident energies between 14 and 22 eV each hydrogen molecule is dissociated at the exterior wall to form two hydrogen atoms, but only one of them goes through the wall. However, at the incident energies between 23 and 26 eV all of the hydrogen atoms dissociated at the exterior wall are found to be capable of going inside the nanotube and then to recombine to form hydrogen molecules inside the nanotube. Consequently, it is determined that hydrogen should have the incident energy >22 eV to go inside the nanotube. On the other hand, we find that the collisions using the incident energies >26 eV could result in damaging the nanotube structures. In addition our MD simulations find that hydrogen atoms dissociated at the wall cannot bind to either boron or nitrogen atoms in the interior wall of the nanotube

    Nanopores of carbon nanotubes as practical hydrogen storage media

    Get PDF
    We report on hydrogen desorption mechanisms in the nanopores of multiwalled carbon nanotubes (MWCNTs). The as-grown MWCNTs show continuous walls that do not provide sites for hydrogen storage under ambient conditions. However, after treating the nanotubes with oxygen plasma to create nanopores in the MWCNTs, we observed the appearance of a new hydrogen desorption peak in the 300–350 K range. Furthermore, the calculations of density functional theory and molecular dynamics simulations confirmed that this peak could be attributed to the hydrogen that is physically adsorbed inside nanopores whose diameter is approximately 1 nm. Thus, we demonstrated that 1 nm nanopores in MWCNTs offer a promising route to hydrogen storage media for onboard practical applications

    STAT1 and Nmi are downstream targets of Ets-1 transcription factor in MCF-7 human breast cancer cell

    Get PDF
    AbstractEts-1 is a cellular homologue of the product of the viral ets oncogene of the E26 virus, and it functions as a tissue-specific transcription factor. It plays an important role in cell proliferation, differentiation, lymphoid cell development, transformation, angiogenesis, and apoptosis. Ets-1 controls the expression of critical genes involved in these processes by binding to ets binding sites present in the transcriptional regulatory regions. Here, we transiently overexpressed Ets-1 in MCF-7 and comprehensively searched for potential downstream targets of Ets-1 by cDNA microarray analysis. The expressions of several interferon-related genes including STAT1 and Nmi were augmented by the overexpression of Ets-1. RT-PCR and Western blotting confirmed the increase in the levels of STAT1 and Nmi mRNA and protein. In contrast, Ets-1 siRNA decreased the expression of STAT1 and Nmi proteins. As in our transient transfection experiments, stable overexpression of Ets-1, also increased the protein expression of STAT1 and Nmi in MCF-7 cells. Taken together, our results indicate that STAT1 and Nmi are downstream targets of Ets-1 in MCF-7 human breast cancer cells

    The Period Variation of and a Spot Model for the Eclipsing Binary AR Bootis

    Full text link
    New CCD photometric observations of the eclipsing system AR Boo were obtained from February 2006 to April 2008. The star's photometric properties are derived from detailed studies of the period variability and of all available light curves. We find that over about 56 years the orbital period of the system has varied due to a combination of an upward parabola and a sinusoid rather than in a monotonic fashion. Mass transfer from the less massive primary to the more massive secondary component is likely responsible for at least a significant part of the secular period change. The cyclical variation with a period of 7.57 yrs and a semi-amplitude of 0.0015 d can be produced either by a light-travel-time effect due to an unseen companion with a scaled mass of M3sini3M_3 \sin i_3=0.081 MM_\odot or by a magnetic period modulation in the secondary star. Historical light curves of AR Boo, as well as our own, display season-to-season light variability, which are best modeled by including both a cool spot and a hot one on the secondary star. We think that the spots express magnetic dynamo-related activity and offer limited support for preferring the magnetic interpretation of the 7.57-year cycle over the third-body understanding. Our solutions confirm that AR Boo belongs to the W-subtype contact binary class, consisting of a hotter, less massive primary star with a spectral type of G9 and a companion of spectral type K1.Comment: 30 pages, including 6 figures and 9 tables, accepted for publication in A

    Resolution of Pregabalin and Mirtazapine Associated Restless Legs Syndrome by Bupropion in a Patient with Major Depressive Disorder

    Get PDF
    Bupropion is a selective norepinephrine and dopamine reuptake inhibitor with no serotonergic activity, and is therefore an antidepressant with unique pharmacological properties. There are some reports that selective serotonin reuptake inhibitors (SSRIs) or mirtazapine can induce adverse effects including restless legs syndrome (RLS) and that bupropion can reverse these adverse effects. Here, we report about a patient with a major depressive disorder who exhibited RLS after being treated with pregabalin and mirtazapine. This adverse effect disappeared after having switched from mirtazapine to bupropion. Bupropion inhibits the reuptake of dopamine and increases dopamine neurotransmission in both the nucleus accumbens and the prefrontal cortex. This pharmacological profile can be effective in patients with RLS related to dopamine hypoactivity. However, the limitations of this single case report mean that further investigations with larger samples are needed

    Safety and Efficacy of Second-Generation Everolimus-Eluting Xience V Stents Versus Zotarolimus-Eluting Resolute Stents in Real-World Practice Patient-Related and Stent-Related Outcomes From the Multicenter Prospective EXCELLENT and RESOLUTE-Korea Registries

    Get PDF
    ObjectivesThis study sought to compare the safety and efficacy of the Xience V/Promus everolimus-eluting stent (EES) (Abbott Vascular, Temecula, California) with the Endeavor Resolute zotarolimus-eluting stent (ZES-R) (Medtronic Cardiovascular, Santa Rosa, California) in “all-comer” cohorts.BackgroundOnly 2 randomized controlled trials have compared these stents.MethodsThe EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) and RESOLUTE-Korea registries prospectively enrolled 3,056 patients treated with the EES and 1,998 patients treated with the ZES-R, respectively, without exclusions. Stent-related composite outcomes (target lesion failure [TLF]) and patient-related composite outcomes were compared in crude and propensity score-matched analyses.ResultsOf 5,054 patients, 3,830 (75.8%) had off-label indication (2,217 treated with EES and 1,613 treated with ZES-R). The stent-related outcome (82 [2.7%] vs. 58 [2.9%], p = 0.662) and the patient-related outcome (225 [7.4%] vs. 153 [7.7%], p = 0.702) did not differ between EES and ZES-R, respectively, at 1 year, which was corroborated by similar results from the propensity score-matched cohort. The rate of definite or probable stent thrombosis (18 [0.6%] vs. 7 [0.4%], p = 0.306) also was similar. In multivariate analysis, off-label indication was the strongest predictor of TLF (adjusted hazard ratio: 2.882; 95% confidence interval: 1.226 to 6.779; p = 0.015).ConclusionsIn this robust real-world registry with unrestricted use of EES and ZES-R, both stents showed comparable safety and efficacy at 1-year follow-up. Overall incidences of TLF and definite stent thrombosis were low, even in the patients with off-label indication, suggesting excellent safety and efficacy of both types of second-generation drug-eluting stents
    corecore