90 research outputs found

    The role of neoadjuvant chemotherapy in ovarian cancer patients with extensive tumor burden

    Get PDF

    Cervical adenocarcinoma in situ with negative conization margin: negligible or not?

    Get PDF

    Lower extremity edema in patients with early ovarian cancer

    Get PDF
    BACKGROUND: The objective of this study was to investigate clinical manifestations of lower extremity edema (LEE) in early ovarian cancer. METHODS: Patients with early ovarian cancer who underwent staging surgery between January 2001 and December 2010. Medical records for LEE and/or responses to the Gynecologic Cancer Lymphedema Questionnaire (GCLQ) were evaluated. RESULTS: Patients had a median age of 46 years. Twenty-nine patients (40.8%) had past (13 patients, 44.8%) and/or current patient-reported LEE (16 patients, 55.2%). Symptoms reported on the GCLQ in over 20% of respondents were numbness, firmness/tightness, swelling, heaviness, limited movement of knee, and aching. GCLQ total symptoms score was significantly higher in patients with current LEE. Most of the LEE (25/29, 86.2%) developed within 12 months after surgery and LEE lasted more than 6 months in approximately two-thirds of the patients (18/29, 62.1%). Only half of the patients (52.1%) indicated knowledge of lymphedema: 86.2% of LEE patients and 28.6% of patients with no LEE. CONCLUSIONS: Although a significant proportion of patients with ovarian cancer have LEE after surgery, most are not aware of lymphedema until they develop. Education and analyses for LEE and lymphedema are needed in patients with ovarian cancer

    Feasibility and Safety of Extensive Upper Abdominal Surgery in Elderly Patients with Advanced Epithelial Ovarian Cancer

    Get PDF
    We performed a retrospective study to evaluate the feasibility and safety of extensive upper abdominal surgery (EUAS) in elderly (≥65 yr) patients with advanced ovarian cancer. Records of patients with advanced epithelial ovarian cancer who received surgery at our institution between January 2001 and June 2005 were reviewed. A total of 137 patients including 32 (20.9%) elderly patients were identified. Co-morbidities were present in 37.5% of the elderly patients. Optimal cytoreduction was feasible in 87.5% of the elderly while 95.2% of young patients were optimally debulked (P=0.237). Among 77 patients who received one or more EUAS procedures, 16 (20.8%) were elderly. Within the cohort, the complication profile was not significantly different between the young and the elderly, except for pleural effusion and pneumothorax (P=0.028). Elderly patients who received 2 or more EUAS procedures, when compared to those 1 or less EUAS procedure, had significantly longer operation times (P=0.009), greater blood loss (P=0.002) and more intraoperative transfusions (P=0.030). EUAS procedures are feasible in elderly patients with good general condition. However, cautious peri-operative care should be given to this group because of their vulnerability to pulmonary complications and multiple EUAS procedures

    The Effect of Breastfeeding Duration and Parity on the Risk of Epithelial Ovarian Cancer: A Systematic Review and Meta-analysis

    Get PDF
    Review Objectives: We conducted a systematic review and meta-analysis to summarize current evidence regarding the association of parity and duration of breastfeeding with the risk of epithelial ovarian cancer (EOC). Methods: A systematic search of relevant studies published by December 31, 2015 was performed in PubMed and EMBASE. A random-effect model was used to obtain the summary relative risks (RRs) and 95% confidence intervals (CIs). Results: Thirty-two studies had parity categories of 1, 2, and ≥3. The summary RRs for EOC were 0.72 (95% CI, 0.65 to 0.79), 0.57 (95% CI, 0.49 to 0.65), and 0.46 (95% CI, 0.41 to 0.52), respectively. Small to moderate heterogeneity was observed for one birth (p<0.01; Q=59.46; I 2 =47.9%). Fifteen studies had breastfeeding categories of <6 months, 6-12 months, and >13 months. The summary RRs were 0.79 (95% CI, 0.72 to 0.87), 0.72 (95% CI, 0.64 to 0.81), and 0.67 (95% CI, 0.56 to 0.79), respectively. Only small heterogeneity was observed for <6 months of breastfeeding (p=0.17; Q=18.79, I 2 =25.5%). Compared to nulliparous women with no history of breastfeeding, the joint effects of two births and <6 months of breastfeeding resulted in a 0.5-fold reduced risk for EOC. Conclusions: The first birth and breastfeeding for <6 months were associated with significant reductions in EOC risk. Key words: Ovarian neoplasms, Parity, Breast feeding, Reproduction, Risk factors, Meta-analysis Received: June 29, 2016 Accepted: September 8, 2016 Corresponding author: Suekyung Park, MD, PhD 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-740-8338, Fax: +82-2-747-4830 E-mail: [email protected] This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION Worldwide, ovarian cancer is the seventh most common cancer in women. Furthermore, it is the sixth leading cause of cancer deaths in women and the second most common cause of death among those with gynecologic cancers 350 to 8%), germ cell tumors (3% to 5%), and other rare types of ovarian cancer Most ovarian cancers are life-threatening and are notorious for having a poor prognosis, as they are usually diagnosed at an advanced stage. Moreover, screening results based on pelvic imaging or tumor markers for early detection remain unsatisfactory Reproductive risk factors for epithelial ovarian cancer (EOC) have been extensively explored in epidemiologic studies. For instance, a pooled analysis of 12 US case-control studies in 1992 showed that parous women and those who had breastfed had a lower risk of EOC Since 1992, many studies from around the world have reported associations of parity and breastfeeding with ovarian cancer. However, findings concerning the protective role of increasing parity and duration of breastfeeding remain inconsistent. For parity, some studies have indicated that the first birth reduces ovarian cancer risk more than subsequent births Therefore, we conducted a systematic review and metaanalysis to summarize the current evidence regarding the association of parity and duration of breastfeeding with EOC risk. The aim of this study was to clarify the threshold for risk reduction among the studies without heterogeneity across the results. An additional aim was to perform a meta-analysis to estimate the joint risk reductions associated with parity and breastfeeding. METHODS Search Strategy We performed a literature search including studies published through December 2015 using the following search terms in the PubMed and EMBASE databases (1) (parity or "number of live births") and (ovary or ovarian) and (cancer or tumor or neoplasm or malignancy) or (2) (breastfeeding or lactation) and (ovary or ovarian) and (cancer or tumor or neoplasm or malignancy). Furthermore, to find any additional published studies, a manual search was performed by checking all references of prior meta-analyses [5,6.8,20-23] and of all the original studies. This systematic review was planned, conducted, and reported in adherence to the standards of quality for reporting meta-analyses Study Selection To be included, studies had to meet the following criteria: (1) the studies were observational (case-control or cohort studies), (2) the exposures of interest were the number of live births and the total duration of breastfeeding, (3) the outcome of interest was EOC, (4) odds ratios (ORs) or relative risk (RR) estimates with 95% confidence intervals (CIs) were reported or sufficient data were present to allow the calculation of these effect measures, and (5) articles were published in the English language. In the case of overlapping data, the study with the largest number of cases was included. As fertility treatments and BRCA mutation effects on EOC may alter the association between parity/breastfeeding and EOC [26], we excluded studies conducted on specific populations, such as BRCA-1 or BRCA-2 mutation carriers or infertile women treated with fertility drugs. The detailed steps of our literature search are shown in Data Extraction Data extraction was conducted independently by two authors. Disagreements were discussed and resolved by consensus. The following data were collected from each study: the first author's last name, publication year, study region and design, study period, participant age, sample size (cases and 351 Parity and Breastfeeding Effects on Ovarian Cancer Risk controls or cohort size), exposure variables (parity or total breastfeeding duration), study-specific adjusted RR or OR with 95% CIs for each exposure category, and factors matched or adjusted for in the design or data analysis. If no adjusted RR or OR was presented, we included crude estimates. If no RRs or ORs were presented in a given study, we calculated them and the 95% CIs according to the raw frequencies presented in the article. The quality of the study was assessed independently by two authors using the 9-star Newcastle-Ottawa Scale (range, 0 to 9 stars) Statistical Analysis The study-specific RRs or ORs with 95% CIs were used to determine the principal outcome. Because the OR closely approximates the RR for rare diseases, the RR can be estimated from a case-control study using the OR as an approximation One study did not provide the required risk estimates for analysis or separate the risk estimates for different categories of parity or breastfeeding duration. For this study, we used the method proposed by Fleiss and Gross [30]. This method allows adjusted effect estimates and CIs to be calculated for any alternative comparison of levels and can help in a dose-response meta-analysis. Briefly, we combined risk estimates obtained through a simple fixed-effects meta-analysis wherein the subjects were divided into unexposed groups (i=0) and exposed groups (i=1, …, n), and estimates (Ri) with lower and upper 95% CIs were available. To obtain the R1+, we meta-analyzed R1, R2, R3, …, Rn using a fixed-effect model. The categories of parity or breastfeeding duration varied across studies; accordingly, the number of studies included in each metaanalysis and the summary RRs in each meta-analysis were different depending upon the number of categories. Statistical heterogeneity among studies was evaluated with the Cochran Q and I-squared statistics 352 with ≤7 stars considered low-quality as per the 9-star Newcastle-Ottawa Scale; and (3) year of publication (<2000, ≥ 2000), respectively. Publication bias was evaluated using the Begg rank correlation and the Egger linear regression test, in which p-vlaue <0.05 were considered representative of statistically significant publication bias From the meta-analyzed result, to calculate the RR for the joint effect of parity and breastfeeding, we applied the log-linear dose-response model proposed by Berlin et al. We configured the following formula for the multivariate linear logit regression of two factors: Logit P=α + β1χ1 + β2χ2; where P is the probability of a particular outcome (EOC risk), α is the intercept from the linear regression equation, β is the regression coefficient multiplied by some value of the predictor, and χ is the risk factor (parity and breastfeeding). Using this equation yields the value of the RR for the joint effects of parity and breastfeeding duration. For example, in the case of a subject who has no risk factors, logit(P) is α. In this case, the probability of EOC is exp(α)=1.0. In the case of a subject with only χ1, logit(P) is α+β1. In the case of a subject with both χ1 and χ2, logit(P) is α+β1+β2. Accordingly, the probability of EOC is exp(β1+β2)=OR1×OR2. Since the category of parity and breastfeeding duration varied across studies, to calculate the RR for the joint effect of parity and breastfeeding, we used the summary RR for parity and breastfeeding duration that contained the largest number of studies. All statistical analyses were performed with Stata version 12.0 (StataCorp., College Station, TX, USA). RESULTS Study Characteristics The characteristics of the 32 studies included with data regarding parity and the 15 studies included with data regarding breastfeeding are shown in Supplemental 353 Parity and Breastfeeding Effects on Ovarian Cancer Risk Africa. For breastfeeding, two cohort studies and 13 case-control studies were included. The included studies were conducted between 1978 and 2008. Of the 15 studies, seven were performed in North America, six in Europe, one in Asia, and one in Australia. Parity and Epithelial Ovarian Cancer Risk Thirty-two studies had parity categories of 1, 2, and ≥3. The summary RRs for the first, second, and third births were 0.72 (95% CI, 0.65 to 0.79), 0.57 (95% CI, 0.49 to 0.65), and 0.46 (95% CI, 0.41 to 0.52), respectively Duration of Breastfeeding and Epithelial Ovarian Cancer Risk Fifteen studies had breastfeeding categories of <6 months, 6-12 months, and ≥13 months. The summary RRs for these categories were 0.79 (95% CI, 0.72 to 0.87), 0.72 (95% CI, 0.64 to 0.81) and 0.67 (95% CI, 0.56 to 0.79), respectively Subgroup Analysis According to Study Design, Study Quality, and Publication Year The results from the subgroup analysis according to study design, study quality, and publication year are shown in Relative Risk for the Joint Effect of Parity and Breastfeeding The RR for the joint effect of parity and breastfeeding, obtained using the summary RR from the analysis of 32 studies with parity categories of 1, 2, and ≥3 and 15 studies with breastfeeding categories of <6 months, 6-12 months, and ≥ 13 months, is shown in DISCUSSION The findings of this meta-analysis indicate that parity and breastfeeding experiences in women can help prevent EOC, which is typically life-threatening and has a poor prognosis. In particular, the first birth and the first six months of breastfeeding had a greater protective effect than did subsequent births and/or additional breastfeeding, although multiparity and additional breastfeeding did provide some additional protection. The risk reduction effect of the first birth on EOC risk was almost 30%, and the combined effect of the first birth and <6 months of breastfeeding was 40%; thus, breastfeeding provided a nearly 10% greater risk reduction. In regards to parity, the EOC risk reduction was highest for the first birth, with some additional protection from the second birth. However, slightly less risk reduction was observed for the third birth Pregnancy and breastfeeding are thought to reduce EOC risk Ho Kyung Sung, et al. 354 by decreasing pituitary gonadotropin levels and inducing anovulation [7,35]. Pregnancy and breastfeeding are expected to decrease the likelihood of spontaneous genetic mutation under the incessant ovulation hypothesis and of the hyperproliferation of inclusion cysts under the gonadotropin hypothesis. However, the observation that multiparity and additional breastfeeding did not provide an equal amount of protection does not provide evidence for either of these hypotheses. Nev- The summary RRs (95% CIs) in each meta-analysis were estimated using a random effect model. 3 Studies with ≥8 stars were considered high-quality as per the 9-star Newcastle-Ottawa Scale. 4 Studies with ≤7 stars were considered low-quality as per the 9-star Newcastle-Ottawa Scale. 355 Parity and Breastfeeding Effects on Ovarian Cancer Risk ertheless, the results of two experimental studies provide biological evidence for the relatively weaker protective effect of additional parity and breastfeeding [36,37]. For instance, high progesterone levels during pregnancy can increase apoptosis, which may clear transformed cells from the ovarian epithelium, meaning that all the accumulated transformed cells are washed fully out by the first pregnancy. Therefore, the first pregnancy provides a stronger protective effect than subsequent pregnancies [36]. In regards to breastfeeding, breastfeeding in the first few months completely inhibits the pulsatile secretion of gonadotropin-releasing hormone and luteinizing hormone, leading to suppression of ovulation [37]. After a couple of months, ovulatory activity may return, even though breastfeeding continues [37]; thus, a longer duration of breastfeeding does not provide an additional protective effect. Our finding of decreased EOC risk with longer breastfeeding is similar to that reported by prior meta-analyses in 2013 and 2014 [22,23], but differs from that of a meta-analysis of nine case-control studies conducted in developed countries in 2001, in which breastfeeding for ≥12 months was associated with a significant 0.72-fold reduced risk of EOC compared to never having breastfed, while breastfeeding <12 months did not show such an association (OR, 0.95; 95% CI, 0.80 to 1.12) The strength of this meta-analysis is that it included all available studies, and the large number of EOC cases allowed for the investigation of the risk associated with different categories of parity and breastfeeding duration. However, the current study also has several limitations. First, our meta-analysis wa

    Epidemiological characteristics of ovarian cancer in Korea

    Get PDF
    Objective: This study was conducted to examine recent trends in ovarian cancer incidence and mortality and secular trends in demographic factors in Korea. Methods: With the data from Korea Central Cancer Registry, International Agency for Research on Cancer, Korean Death Registry, and World Health Organization`s Statistical Information System, we calculated age-standardized incidence and mortality rates for ovarian cancer. Also we estimated future incidence of ovarian and cervical cancer using linear regression model. To assess the demographic trend, data from national surveys in Korea or results from published papers were searched. Results: Ovarian cancer incidence rate was similar to that in women worldwide but lower than those in Western countries, and the trend has been increased steadily. Ovarian cancer-related mortality rates have been increasing in Korea, even though those in western and some Asian countries, such as China, have been decreasing. Age-specific incidence rate and mortality rate showed steep increases with advancing age. The incidence rate of ovarian cancer was estimated to surpass that of uterine cervix cancer in 2015. Korea showed rapid changes in nutritional, reproductive, and anthropometric factors. Conclusion: These recent trends in ovarian cancer incidence and mortality may be partly attributed to gradual westernizing of life styles and to changes in socio-demographic behavior factors. In particular, the increasing trend in ovarian cancer mortality in Korea may be attributed to a real rise in mortality as well as, in part, a decline in misclassification bias related to an increase in the proportion of deaths confirmed by physician diagnosis.Kolahdooz F, 2010, AM J CLIN NUTR, V91, P1752, DOI 10.3945/ajcn.2009.28415Kim HG, 2010, ELECTROCHEM SOLID ST, V13, pH42, DOI 10.1149/1.3266905Cho GJ, 2010, EUR J PEDIATR, V169, P89, DOI 10.1007/s00431-009-0993-1Hirabayashi Y, 2009, JPN J CLIN ONCOL, V39, P860, DOI 10.1093/jjco/hyp168Park SK, 2009, J KOREAN MED ASSOC, V52, P937Ushijima K, 2009, J GYNECOL ONCOL, V20, P67, DOI 10.3802/jgo.2009.20.2.67Kim K, 2009, J GYNECOL ONCOL, V20, P72, DOI 10.3802/jgo.2009.20.2.72ALTEKRUSE SF, 2009, SEER CANC STAT REV 1*WHO, 2009, MORT BURD DIS EST WH*MIN HLTH WELF FAM, 2009, ANN REP CANC INC 200*KIHASA, 2009, NAT SURV DAT MARR FEBeral V, 2008, LANCET, V371, P303AHN YO, 2007, J PREV MED PUB HLTH, V40, P265PARK MJ, 2006, KOREAN J PEDIAT, V49, P610Brewster WR, 2005, NAT CLIN PRACT ONCOL, V2, P286, DOI 10.1038/ncponc0198Brinton LA, 2005, FERTIL STERIL, V83, P261, DOI 10.1016/j.fertnstert.2004.09.016Zografos GC, 2004, INT J GYNECOL CANCER, V14, P721JO MW, 2004, J PREV MED PUBLIC HL, V37, P345HWANG N, 2003, HLTH WELL POLICY FOR, V82, P88Moorman PG, 2002, CANCER CAUSE CONTROL, V13, P807PARKIN DM, 2002, IARC SCI PUBLICATION, V155Olaitan A, 2000, BRIT J OBSTET GYNAEC, V107, P1094Risch HA, 1998, J NATL CANCER I, V90, P1774Nugent D, 1998, BRIT J OBSTET GYNAEC, V105, P584KIM NI, 1995, KOREAN J POPUL STUD, V18, P1WHITTEMORE AS, 1992, AM J EPIDEMIOL, V136, P1184PARAZZINI F, 1991, GYNECOL ONCOL, V43, P9*KOR NAT STAT OFF, 1983, KOR STAT INF SYST KOSEGI M, 1966, CANC MORTALITY SELEC*WHO, GLOB 2008*SIZ KOR, COMP EST ACC YEAR*MIN HLTH WELF KOR, KOR NAT HLTH NUTR EX*KOR NAT STAT OFF, PIL RES BIRTH STAT 2*KOR NAT STAT OFF, POP PROJ KOR 2005 20*KOR STAT INF SERV, POP STAT

    Population attributable risks of modifiable reproductive factors for breast and ovarian cancers in Korea

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Breast and ovarian cancers are predominant female cancers with increasing prevalence. The purpose of this study was to estimate the population attributable risks (PARs) of breast and ovarian cancer occurrence based on the relative risks (RRs) of modifiable reproductive factors and population-specific exposure prevalence. Methods The PAR was calculated by using the 1990 standardized prevalence rates, the 2010 national cancer incidence with a 20 year lag period, the meta-analyzed RRs from studies conducted in the Korean population for breast cancer, and the meta-analyzed RRs from a Korean epithelial ovarian cancer study and a prior meta-analysis, and ovarian cancer cohort results up to 2012. For oral contraceptive and hormone replacement therapy use, we did not consider lag period. Results The summary PARs for modifiable reproductive factors were 16.7 % (95 % CI 15.8–17.6) for breast cancer (2404 cases) and 81.9 % (95 % CI 55.0–100.0) for ovarian cancer (1579 cases). The modifiable reproductive factors included pregnancy/age at first birth (8.0 %), total period of breastfeeding (3.1 %), oral contraceptive use (5.3 %), and hormone replacement therapy use (0.3 %) for breast cancer and included breastfeeding experience (2.9 %), pregnancy (1.2 %), tubal ligation (24.5 %), and oral contraceptive use (53.3 %) for ovarian cancer. Conclusions Despite inherent uncertainties in the risk factors for breast and ovarian cancers, we suggest that appropriate long-term control of modifiable reproductive factors could reduce breast and ovarian cancer incidences and their related burdens by 16.7 % and 81.9 %, respectively
    corecore