1,356 research outputs found

    Fibrin Glue Reduces the Duration of Lymphatic Drainage after Lumpectomy and Level II or III Axillary Lymph Node Dissection for Breast Cancer: A Prospective Randomized Trial

    Get PDF
    This randomized prospective study investigated the effect of fibrin glue use on drainage duration and overall drain output after lumpectomy and axillary dissection in breast cancer patients. A total of 100 patients undergoing breast lumpectomy and axillary dissection were randomized to a fibrin glue group (N=50; glue sprayed onto the axillary dissection site) or a control group (N=50). Outcome measures were drainage duration, overall drain output, and incidence of seroma. Overall, the fibrin glue and control groups were similar in terms of drainage duration, overall drain output, and incidence of seroma. However, subgroup analysis showed that fibrin glue use resulted in a shorter drainage duration (3.5 vs. 4.7 days; p=0.0006) and overall drain output (196 vs. 278 mL; p=0.0255) in patients undergoing level II or III axillary dissection. Fibrin glue use reduced drainage duration and overall drain output in breast cancer patients undergoing a lumpectomy and level II or III axillary dissection

    A GBS-based genetic linkage map and quantitative trait loci (QTL) associated with resistance to Xanthomonas campestris pv. campestris race 1 identified in Brassica oleracea

    Get PDF
    The production of Brassica oleracea, an important vegetable crop, is severely affected by black rot disease caused by the bacterial pathogen Xanthomonas campestris pv. campestris. Resistance to race 1, the most virulent and widespread race in B. oleracea, is under quantitative control; therefore, identifying the genes and genetic markers associated with resistance is crucial for developing resistant cultivars. Quantitative trait locus (QTL) analysis of resistance in the F2 population developed by crossing the resistant parent BR155 with the susceptible parent SC31 was performed. Sequence GBS approach was used to develop a genetic linkage map. The map contained 7,940 single nucleotide polymorphism markers consisting of nine linkage groups spanning 675.64 cM with an average marker distance of 0.66 cM. The F2:3 population (N = 126) was evaluated for resistance to black rot disease in summer (2020), fall (2020), and spring (2021). QTL analysis, using a genetic map and phenotyping data, identified seven QTLs with LOD values between 2.10 and 4.27. The major QTL, qCaBR1, was an area of overlap between the two QTLs identified in the 2nd and 3rd trials located at C06. Among the genes located in the major QTL interval, 96 genes had annotation results, and eight were found to respond to biotic stimuli. We compared the expression patterns of eight candidate genes in susceptible (SC31) and resistant (BR155) lines using qRT-PCR and observed their early and transient increases or suppression in response to Xanthomonas campestris pv. campestris inoculation. These results support the involvement of the eight candidate genes in black rot resistance. The findings of this study will contribute towards marker-assisted selection, additionally the functional analysis of candidate genes may elucidate the molecular mechanisms underlying black rot resistance in B. oleracea

    Comparative analysis of FBS containing media and serum free chemically defined media, CellCor for adipose derived stem cells production

    Get PDF
    Background: As a result of the aging society, the average OECD life expectancy has grown to about 80 years, yet the average health life still remains at only 65 years, leaving more than 15 years of life in an uncertain health state. Regenerative medicine is a new concept of medicine that combines cells and biomaterials to restore the functions of aged or damaged tissues or organs. It is also a good treatment for chronic diseases and incurable diseases, receiving attention as a new paradigm for treating diseases. Problems: As the market for regenerative medicine grows, mass production of consistent quality cells is required. Media is the most important thing in mass production of consistent quality cells. However, the fetal bovine serum (FBS) containing media that is currently wide used has many problems, such as unidentified viral infection, immunogenicity, lot variations, unstable supply, and ethical issues. To solve these problems and make rapid progress in regenerative medicine, a high-performance serum free chemically defined media (CDM) is needed. Solution: CellCor is a serum free CDM that provides excellent performance, safety, economy and consistency in stem cell production. CellCor allows higher-speed cell production rate than current FBS containing culture media (Figure 1). Compared to the FBS containing media, CellCor is able to maintain stem cell markers, higher population homogeneity, genetic stability, and excellent differentiation potency even at later passage. Please click Additional Files below to see the full abstract

    Peptidyl arginine deiminase type IV (PADI4) haplotypes interact with shared epitope regardless of anti-cyclic citrullinated peptide antibody or erosive joint status in rheumatoid arthritis: a case control study

    Get PDF
    Introduction: Anti-cyclic citrullinated peptide autoantibodies (anti-CCP) are the most specific serologic marker for rheumatoid arthritis (RA). Genetic polymorphisms in a citrullinating (or deiminating) enzyme, peptidyl arginine deiminase type IV (PADI4) have been reproducibly associated with RA susceptibility in several populations. We investigated whether PADI4 polymorphisms contribute to anti-CCP-negative as well as -positive RA, whether they influence disease severity (erosive joint status), and whether they interact with two major risk factors for RA, Human Leukocyte Antigen-DRB1 (HLA-DRB1) shared epitope (SE) alleles and smoking, depending on anti-CCP and erosive joint status.Methods: All 2,317 unrelated Korean subjects including 1,313 patients with RA and 1,004 unaffected controls were genotyped for three nonsynonymous (padi4_89, padi4_90, and padi4_92) and one synonymous (padi4_104) singlenucleotide polymorphisms (SNPs) in PADI4 and for HLA-DRB1 by direct DNA sequence analysis. Odds ratios (OR) were calculated by multivariate logistic regression. Interaction was evaluated by attributable proportions (AP), with 95% confidence intervals (CI).Results: A functional haplotype of the three fully correlated nonsynonymous SNPs in PADI4 was significantly associated with susceptibility to not only anti-CCP-positive (adjusted OR 1.73, 95% CI 1.34 to 2.23) but also -negative RA (adjusted OR 1.75, 95% CI 1.15 to 2.68). A strong association with both non-erosive (adjusted OR 1.62, 95% CI 1.29 to 2.05) and erosive RA (adjusted OR 1.62, 95% CI 1.14 to 2.31) was observed for PADI4 haplotype. Gene-gene interactions between the homozygous RA-risk PADI4 haplotype and SE alleles were significant in both anti-CCP-positive (AP 0.45, 95% CI 0.20 to 0.71) and -negative RA (AP 0.61, 95% CI 0.29 to 0.92). Theses interactions were also observed for both non-erosive (AP 0.48, 95% CI 0.25 to 0.72) and erosive RA (AP 0.46, 95% CI 0.14 to 0.78). In contrast, no interaction was observed between smoking and PADI4 polymorphisms.Conclusions: A haplotype of nonsynonymous SNPs in PADI4 contributes to development of RA regardless of anti-CCP or erosive joint status. The homozygous PADI4 haplotype contri bution is affected by gene-gene interactions with HLADRB1 SE alleles.We are grateful to many research workers for assistance with sample preparation, data collection, and technical study. Dr. Bang's work was supported by a grant from the Korea Healthcare Technology R&D Project (A090706). Dr. Bae's work was supported by a grant from the Korea Healthcare Technology R&D Project (A084794 and A010252). Dr. Kang's work was supported by a grant from the Research Program for New Drug Target Discovery (M10748000231-08N4800-23110)

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity

    Dysfunction in Configural Face Processing in Patients With Schizophrenia

    Get PDF
    Background: Face recognition has important implications for patients with schizophrenia, who exhibit poor interpersonal and social skills. Previous reports have suggested that patients with schizophrenia have deficits in their ability to recognize faces, and because face recognition relies heavily on information about the configuration of faces, we hypothesized that patients with schizophrenia would have specific problems in processing configural information. Methods: We measured the performance of 20 patients with schizophrenia and 20 normal subjects in a face-discrimination task, using upright and inverted pairs of face photographs that differed in featural or configural information. Results: The patients with schizophrenia showed disproportionately poorer performance in discriminating configural compared with featural face sets. Conclusion: The result suggests that the face-recognition deficit in schizophrenic patients is due to specific impairments in configural processing of faces

    Calpain-mediated proteolysis of polycystin-1 C-terminus induces JAK2 and ERK signal alterations

    Get PDF
    AbstractAutosomal dominant polycystic kidney disease (ADPKD), a hereditary renal disease caused by mutations in PKD1 (85%) or PKD2 (15%), is characterized by the development of gradually enlarging multiple renal cysts and progressive renal failure. Polycystin-1 (PC1), PKD1 gene product, is an integral membrane glycoprotein which regulates a number of different biological processes including cell proliferation, apoptosis, cell polarity, and tubulogenesis. PC1 is a target of various proteolytic cleavages and proteosomal degradations, but its role in intracellular signaling pathways remains poorly understood. Herein, we demonstrated that PC1 is a novel substrate for ΞΌ- and m-calpains, which are calcium-dependent cysteine proteases. Overexpression of PC1 altered both Janus-activated kinase 2 (JAK2) and extracellular signal-regulated kinase (ERK) signals, which were independently regulated by calpain-mediated PC1 degradation. They suggest that the PC1 function on JAK2 and ERK signaling pathways might be regulated by calpains in response to the changes in intracellular calcium concentration
    • …
    corecore