5 research outputs found

    A simple and efficient numerical method for the Allen–Cahn equation on effective symmetric triangular meshes

    Get PDF
    In this paper, we propose a novel, simple, efficient, and explicit numerical method for the Allen–Cahn (AC) equation on effective symmetric triangular meshes. First, we compute the net vector of all vectors starting from each node point to its one-ring neighbor vertices and virtually adjust the neighbor vertices so that the net vector is zero. Then, we define the values at the virtually adjusted nodes using linear and quadratic interpolations. Finally, we define a discrete Laplace operator on triangular meshes. We perform several computational experiments to demonstrate the performance of the proposed numerical method for the Laplace operator, the diffusion equation, and the AC equation on triangular meshes

    Additional file 1 of CLIP-GENE: a web service of the condition specific context-laid integrative analysis for gene prioritization in mouse TF knockout experiments

    Get PDF
    Table S1. Performance comparison of CLIP-GENE (excluding and including network) while analyzing Gata3, Setd2, and Barx2 knockout data. Table S2. Performance comparison of CLIP-GENE (applied network and RegNetwork) while analyzing Gata3, Setd2, and Barx2 knockout data. Table S3. Performance comparison of CLIP-GENE (no-context, best context, worst context, combination of context) while analyzing Gata3, Setd2, and Barx2 knockout data. (DOCX 20.4 kb

    All-in-one microfluidic design to integrate vascularized tumor spheroid into high-throughput platform

    No full text
    The development of a scalable and highly reproducible in vitro tumor microenvironment (TME) platform still sheds light on new insights into cancer metastasis mechanisms and anticancer therapeutic strategies. Here, we present an all-in-one injection molded plastic array three-dimensional culture platform (All-in-One-IMPACT) that integrates vascularized tumor spheroids for highly reproducible, high-throughput experimentation. This device allows the formation of self-assembled cell spheroids on a chip by applying the hanging drop method to the cell culture channel. Then, when the hydrogel containing endothelial cells and fibroblasts is injected, the spheroid inside the droplet can be patterned together in three dimensions along the culture channel. In just two steps above, we can build a vascularized TME within a defined area. This process does not require specialized user skill and minimizes error-inducing steps, enabling both reproducibility and high throughput of the experiment. We have successfully demonstrated the process, from spheroid formation to tumor vascularization, using patient-derived cancer cells (PDCs) as well as various cancer cell lines. Furthermore, we performed combination therapies with Taxol (paclitaxel) and Avastin (bevacizumab), which are used in standard care for metastatic cancer. The All-in-One IMPACT is a powerful tool for establishing various anticancer treatment strategies through the development of a complex TME for use in high-throughput experiments.N

    Characterization of Emission Factors Concerning Gasoline, LPG, and Diesel Vehicles via Transient Chassis-Dynamometer Tests

    No full text
    Gaseous emissions from vehicles contribute substantially to air pollution and climate change. Vehicular emissions also contain secondary pollutants produced via chemical reactions that occur between the emitted gases and atmospheric air. This study aims at understanding patterns concerning emission of regulated, greenhouse, and precursor gases, which demonstrate potential for secondary aerosol (SA) formation, from vehicles incorporating different engine technologies—multi-point injection (MPI) and gasoline direct injection (GDI)—and using different fuels—gasoline, liquefied petroleum gas (LPG), and diesel. Drive cycles from the National Institute of Environmental Research (NIER) were used in this study. Results obtained from drive cycle tests demonstrate a decline in aggregate gas emissions corresponding to an increase in average vehicle speed. CO2 accounts for more than 99% of aggregate gaseous emissions. In terms of concentration, CO and NH3 form predominantly non-CO2 emissions from gasoline and LPG vehicles, whereas nitrogen oxides (NOx) and non-methane hydrocarbons (NMHC) dominate diesel-vehicle emissions. A higher percentage of SO2 is emitted from diesel vehicles compared to their gasoline- and LPG-powered counterparts. EURO-5- and EURO-6-compliant vehicles equipped with diesel particulate filters (DPFs) tend to emit higher amounts of NO2 compared to EURO-3-compliant vehicles, which are not equipped with DPFs. Vehicles incorporating GDI tend to emit less CO2 compared to those incorporating MPI, albeit at the expense of increased CO emissions. The authors believe that results reported in this paper concerning regulated and unregulated pollutant-emission monitoring can contribute towards an accurate evaluation of both primary and secondary air-pollution scenarios in Korea
    corecore