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Abstract

Motivation: Transcriptome data from the gene knockout experiment in mouse is widely used to investigate
functions of genes and relationship to phenotypes. When a gene is knocked out, it is important to identify which genes
are affected by the knockout gene. Existing methods, including differentially expressed gene (DEG) methods, can be
used for the analysis. However, existing methods require cutoff values to select candidate genes, which can produce
either too many false positives or false negatives. This hurdle can be addressed either by improving the accuracy of
gene selection or by providing a method to rank candidate genes effectively, or both. Prioritization of candidate
genes should consider the goals or context of the knockout experiment. As of now, there are no tools designed for
both selecting and prioritizing genes from the mouse knockout data. Hence, the necessity of a new tool arises.

Results: In this study, we present CLIP-GENE, a web service that selects gene markers by utilizing differentially
expressed genes, mouse transcription factor (TF) network, and single nucleotide variant information. Then,
protein-protein interaction network and literature information are utilized to find genes that are relevant to the
phenotypic differences. One of the novel features is to allow researchers to specify their contexts or hypotheses in a
set of keywords to rank genes according to the contexts that the user specify. We believe that CLIP-GENE will be
useful in characterizing functions of TFs in mouse experiments.

Availability: http://epigenomics.snu.ac.kr/CLIP-GENE

Reviewers: This article was reviewed by Dr. Lee and Dr. Pongor.
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Introduction
Measuring RNA-seq data from the knockout mice exper-
iment is widely used to characterize the function of a
gene at the in vivo level. By taking the advantage of high-
resolution data, the combination of RNA-seq and the
knockout mice experiment have demonstrated its util-
ity to determine genes that can explain the phenotypic
differences between knockout and wild type mice [1].
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Analyzing differentially expressed genes (DEGs) is one of
the most widely used method to explain the altered pat-
terns of gene expression between wild type and knockout
mice. However, the DEG method has several limitations
in explaining the relationship between the alteration of
gene expression and the knockout gene. First, the num-
ber of genes that are estimated as DEGs are typically large
and varies due to the diversity of the underlying mod-
els, such as options, thresholds, and p-values. Thus it is
challenging to focus on genes that are related to the phe-
notype [2], even if themethod provides statistical scores to
prioritize genes. Furthermore, linking the phenotypic dif-
ference with identified DEGs lacks in logical explanation
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since DEG methods do not consider the complex inter-
actions among genes. For these reasons, it is difficult to
select genes that are related to the phenotypic differences
in samples.
To overcome the limitations of the DEG methods, stud-

ies have suggested several integrative analysis techniques
that utilize additional information to effectively identify
genes that are related to the phenotypic differences. Inte-
grative analysis techniques typically utilize networks such
as gene regulatory network (GRN), protein-protein inter-
action (PPI), or pathway information to determine genes
that are related to the phenotypic differences. GRN is
shown to be useful in determining the regulatory role
of certain genes by using various expression data [3–5].
PPI and pathway information are both networks from
the documented biological knowledge to consider gene-
gene relationships [6]. In addition, the high throughput
sequencing data can be used to exclude genes that may be
expressed differentially due to the genetic differences in
different samples by identifying single nucleotide variants
(SNVs). This technique is particularly useful with small
number of samples to identify genes related to the actual
phenotypic differences regardless of genetic differences
[7]. Although these methods are effective in narrowing
down to the actual candidate genes to a few hundreds,
researchers need more information to prioritize genes
that are more relevant to the phenotypic differences.
In the past few years, many studies have proposed

methods to prioritize genes from a large pool of can-
didates [8] by utilizing various data sources such as
gene ontology, PPI, signaling pathways, literature search,
and more. However, it is known that the heterogeneous
data sources cause difficulties to integrate multiple data
sources. The complexities among data sources cause com-
patibility issues and makes it difficult to understand the
relationship between the input data and the final pri-
oritized results since it lacks in logical ‘explanation’ [8].
Thus it is necessary to integrate these heterogeneous data
sources consistently in a single framework.

Motivation
Even though previous studies proposed many useful com-
putational methods to prioritize genes, there should be
more efforts to design, implement, and deliver usable soft-
ware packages for researchers. The motivations of our
study are as follows.
First, most existing gene prioritization tools are not

appropriate for the condition specific data such as mice
knockout data. When a certain gene is knocked out,
researchers have specific hypotheses that are related to
the observed phenotypic differences. Thus, to select genes
that are related to phenotypic differences, it is important
to not only consider gene expression alteration but also
to prioritize genes with the researcher’s interest. Without

considering the condition or the goal of experiment, prior-
itization results would lack explanation on ‘how and why
genes are ranked’. The best strategy is to provide infor-
mation about the conditions of the experiment or specific
hypothesis that the user has. When the user provides such
information, genes can be prioritized by consulting the
literature database. Therefore, it is necessary to perform
an integrative analysis of transcriptome data and litera-
ture data for the condition specific gene selection and
prioritization.
Second, complex relationships among genes should

be considered in order to selected and prioritize genes
that are related to the phenotype. Therefore, networks
such as GRN and PPI are useful in explaining alteration
among genes by considering gene-gene and regulatory
relationships. Many knockout experiments have inves-
tigated transcription factors (TFs) that could result in
the phenotypic differences by analyzing the GRN [9–12].
Thus, considering GRN (to be specific, TF network) is
essential to characterize the roles of TFs from knockout
data. In addition to TF networks, PPI networks also assist
in explaining expression alteration among genes since PPI
networks consist more entities than other networks such
as TF networks and biological pathway networks. Since
we need to use both TF and PPI networks, an issue is
how to utilize two different networks in a single computa-
tional framework. Our approach uses TF network to select
candidate genes from TF knockout experiment and uses
PPI to prioritize candidate genes in combination of the
literature information in a condition specific manner.
Third, existing computational methods for prioritizing

genes are not designed for mouse knockout data. Only 3
among 27 tools (listed in Gene Prioritization Portal [13])
are designed for the mouse data [14–16]. However, we
think that these tools are generally not applicable to evalu-
ate RNA-seq data of knockout experiments. For example,
even though PINTA [16] and GeneFriends [14] can priori-
tize genes based on the concept of the guilt-by-association
or network analysis, these tools require a pre-selected
gene list of a certain size: up to 200 genes in PINTA and
up to 500 genes in GeneFriends. Both tools are not appli-
cable when the number of genes are large, such as DEG
results. Although use of a stringent cutoff value can reduce
the number of candidate genes that can be used for afore-
mentioned tools, there may be too many false negatives.
Therefore, the requirement of a pre-selected gene list in
PINTA and GeneFriends is not easy to be resolved. In
addition, PINTA is designed for microarray data and pri-
oritizes genes by referring the expression profiles of its
neighbors from the PPI network, but it does not consider
the influence of the knockout gene. Likewise, GeneFriends
prioritizes genes by considering co-expression of other
genes but does not reflect the effect of the knockout gene.
Another tool, Endeavor [15], is able to prioritize genes
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from a large number of gene list that does not require
pre-selection from gene list. However, Endeavor requires
a gene list from prior knowledge as a training dataset,
and it is designed to select disease related genes rather
than knockout related genes. By considering all issues, we
introduce CLIP-GENE (Context Laid Integrative analysis
to Prioritize genes), a web based tool that takes a DEG
list as input and uses TF network and SNV information to
narrow down candidate genes and prioritizes genes with
PPI information and literature information. In particular,
CLIP-GENE allows researchers to specify the context of
the experiment as a set of keywords input to a biomedical
entity search tool (BEST) [17].

Methods
Workflow of CLIP-GENE
CLIP-GENE selects and prioritizes genes in two major
steps. For the selection step, TF network and SNV infor-
mation are used to select candidate genes that are affected
by the knockout gene as well as expressed differentially
between wild type and knockout mice. For prioritization,
BEST and PPI information are used to prioritize genes
according to the researcher’s context or hypothesis. With
the assistance of a literature search tool BEST, it allows
to specify certain context or hypothesis with a set of

keywords by user that is expected from the data. After-
wards, PPI is used to consider the gene-gene relationship
between the candidate genes and the knockout gene.
Workflow of CLIP-GENE is illustrated in Fig. 1. Details of
each step are described below.

Step 1: selection of candidate genes
CLIP-GENE takes a DEG list from the knockout exper-
iment and investigates the regulatory role of the DEGs
by referring to TF network. The methods for DEG selec-
tion and the TF network construction are described in
Materials section.

Step 1-1: selecting candidate DEGs using TF network.
CLIP-GENE takes a list of DEGs as input and uses them
as initial candidates. Then, by referring to the mouse TF
network that was constructed using 150 mice expression
profiles, DEGs that do not affect other DEGs or DEGs that
are not affected by the knockout gene are excluded. This
step is performed to focus on the relationship between the
regulator and its target genes that are significantly altered.

Step 1-2: removing DEGs caused by genetic difference.
After CLIP-GENE selects candidate DEGs that takes a
part in the regulatory role, SNV information is used to

GENE
- / -

Differentially Expressed Genes

GENE
- / -

TF Network

GENE
- / -

Protein-Protein Interaction ( shortest path to KO gene )

Single Nucleotide Variant

Control Genome

Case Genome

Ranking genes : context-aware

Result Presentation
Web Service Stand-alone Package

+
= SNV

Fig. 1 A Workflow of CLIP-GENE. CLIP-GENE prioritize user-interested genes that are relevant to phenotypic/functional differences of knockout mice
data. CLIP-GENE takes DEG as input and filter out genes by using TF network and SNV information. Then prioritize these genes by using BEST and PPI
information
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filter out DEGs that might be caused by the genetic dif-
ferences rather than the influence of the knockout gene.
It is well known that even if the inbred mice are raised
in a controlled environment, genetic differences are likely
to be present [18]. If we can perform a large number
of RNA-seq experiments, it is possible to screen genes
that may be expressed differentially due to the genetic
difference. However, it is not practical to perform such
a large number of RNA-seq experiments that is enough
to remove such genes. To compensate the low statistical
power of the typical RNA-seq data, candidate genes with
over than a certain rate of SNVs in the knockout mice are
discarded [7].

Step 2: prioritizing genes with the user context & PPI
Candidate genes selected in Step 1 are ranked in
terms of the relevance to the phenotype in two dif-
ferent criteria: the user specified context and the PPI
information.

Step 2-1: rank genes with user’s interest CLIP-GENE
users can specify their hypothesis for the knockout data
as ‘context’ in a set of keywords. Specifically, context
means a set of subjective words that describe the user’s
interest such as ‘expected biological function when the
gene is knockout’ or ‘known function of the knockout
gene’. For example, a context for Gata3 knockout data
can be described as ‘Immune response’, ‘Cell signaling’,
or ‘Inflammatory response’ [19, 20]. Then genes that are
related to the user-specified keywords can be determined
by looking for the relevance between keywords since cer-
tain keywords are documented in the literature in relation
to a certain gene. Thus this can be viewed as a process
to find keyword-keyword relationship and keyword-gene
relationship to prioritize genes.
In order to find the relevance between two different

keywords, literature search systems based on the named
entity recognition (NER) are known to be effective [21].
For CLIP-GENE, BEST [17] is used to find the relevance
between knockout gene and candidate genes as well as
the relationship between candidate genes and the user
given context. With the user specified keywords, BEST
computes relevance between any pair of keywords from
PubMed and returns a relevance score of genes with ranks.
Once the relevance score of ‘context to candidate gene’
and ‘knockout gene to candidate gene’ is calculated, the
maximum of them is used to represent how the candidate
gene is relevant to the user’s interest or the knockout gene.
As a result, a candidate gene with a higher relevance score
is ranked with higher priority.

Step 2-2: rank genes using PPI PPI information is used
to rank candidates by computing the shortest interac-
tion path to the knockout gene on the STRING PPI

network [22]. Candidates that have shorter interaction
path to the knockout gene are considered to be more
relevant to the phenotypic/functional difference, hence
they are ranked with a higher priority. Finally, CLIP-
GENE summarizes candidates with ranks by combining
the BEST and PPI information with unweighted Borda
count [23]. Figures 2 and 3 describes the overview of gene
prioritization.

Results
Evaluation of CLIP-GENE
For the performance evaluation, we used datasets that
come with publications reporting which genes are rele-
vant to the functional difference when the gene is silenced.
These genes are used as true positives to measure the pre-
cision, recall, and F-measure in terms of genes reported in
the publications for data sets, GSE47851 [19], GSE54932
[24], and GSE53398 [25]. CLIP-GENE was compared
with methods and tools that can be used for RNA-
seq mouse data. In this study we compared with DEG
method (DEG), integrative analysis method (IA) [7], and
GeneFriends [14] in terms of the predictive power. In
addition, since the user can specify context with a set
of keywords, the performance depends on the context
that the user provides. In this experiment, we used the
four different sets of keywords as context. To compare
the predictive power, we designated the best case and
the worst case in terms of the number of genes repro-
duced by CLIP-GENE. In addition, as BEST investigates
the relationship between two given keywords by refer-
ring the abstract from PubMed, we chose keywords that
were not mentioned in the abstract of the correspond-
ing publications. This process is done to make sure that
BEST did not consider the keywords from the publication
that generated the data while calculating the relevance
score.
Dataset GSE47851 is from a Gata3 knockout mouse

study that reported 25 genes were relevant to the func-
tional difference between the wild type and the knockout.
For the performance evaluation, we used four different
contexts: ‘Inflammatory response’, ‘Immune regulation’,
‘Cell differentiation’, ‘Cell proliferation’, the known func-
tions of Gata3 [19, 20]. Dataset GSE54932 is from a Setd2
knockout study, reporting 21 genes that are relevant to
the phenotypic/functional differences between the wild
type and the knockout. ‘Cell proliferation’, ‘DNAmismatch
repair’, ‘Endodermal differentiation’, and ‘Histone modifi-
cation’ were used as the contexts for the Setd2 knockout
study since they are keywords representing well-known
functions of Setd2 [24, 26]. Dataset GSE53398 of Barx2
knockout mice, was used for the last evaluation. The
study reported that 47 genes significantly differs when
Barx2 is silenced. For the corresponding knockout mice
data, we used ‘Myoblast progeny’, ‘Muscle maintenance’,
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BEST: Biomedical Entity Search Tool

BEST: Biomedical Entity Search Tool

Fig. 2 Prioritization step 1: Prioritizing genes with Biomedical Entity Search Tool (BEST). BEST is utilized to find the relevance between knockout gene
and candidate gene as well as the relationship between candidate gene and given context. Then CLIP-GENE retrieves the maximum score to
represent that the candidate gene is highly relevant to the user’s interest or knockout gene. As a result, candidate gene with higher relevance score
is ranked with high priority
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Fig. 3 Prioritization step 2: Prioritizing genes with Biomedical Entity Search Tool (BEST) and PPI information. CLIP-GENE summarizes ranks from step
1 and PPI shortest path by using Borda count
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‘Chondrogenesis’, ‘Morphogenesis’ as the contexts for
CLIP-GENE [27–31].

Performance with the best context
In terms of F-measure, CLIP-GENE achieved better
performance in finding phenotypical/functional rele-
vant (validated) genes than GeneFriends, IA, and DEG
method (Tables 1, 2 and 3), as well as prioritizing phe-
notypic/functionally relevant genes with proper ranks
(Tables 4, 5 and 6). Context ‘Immune regulation’ achieved
the best performance for the Gata3 knockout data, which
performed about 5.4 times better than DEG, 2.4 better
than IA, and 15 times better than GeneFriends while
ranking 4 genes in the top 10 gene list among 25 vali-
dated genes. For the Setd2 knockout data, CLIP-GENE
ranked 4 genes among 21 validated genes in top 10 list
with the context ‘Endodermal differentiation’, achieving 11
times better than DEG, 6.7 times better than IA, and 72
times better than GeneFriends. For the Barx2 knockout
data, context ‘Myoblast progeny’ achieved the best perfor-
mance, achieving 4.8 times better than the DEG, 3.2 times
better than IA method, and 9.7 times better than Gene-
Friends. In addition, CLIP-GENE was able to prioritize
2 genes among 47 validated genes in top 10 from Barx2
knockout data.

Performance with the worst context
In terms of F-measure, even with the worst performed
context, CLIP-GENE achieved better performance in pre-
dicting phenotypic/functionally relevant genes. For the
Gata3 knockout data, context ‘Cell proliferation’ per-
formed 1.9 times better than DEG and 5.2 times better
than GeneFriends, and slightly poor than IA. CLIP-GENE
ranked one gene in the top 10 among 25 validated genes.
The context ‘Cell proliferation’ performed the worst case
for the Setd2 knockout data, which still performed bet-
ter than DEG, IA, and GeneFriends while reporting one
gene among 21 validated genes in top 10. ‘Morphogen-
sis’ was the worst context for the Barx2 knockout dataset.
However, CLIP-GENE still performs better than other

Table 1 Performance of CLIP-GENE while analyzing GSE47851
(Gata3 KO)

Methods Precision Recall F-measure

DEG 0.0105 1 0.0208

IA 0.0239 0.72 0.0463

GeneFriends 0.0038 0.92 0.0075

CLIP-GENE (Immune regulation*) 0.0613 0.64 0.1122

CLIP-GENE (Inflammatory response) 0.0354 0.76 0.0677

CLIP-GENE (Cell differentiation) 0.0294 0.72 0.0564

CLIP-GENE (Cell proliferation) 0.0201 0.72 0.0391

The best performed measurement is marked with a star (*) with a bold text

methods while ranking 2 genes from the 47 validated
genes in top 10, which again suggests that CLIP-GENE
promises significant results than other comparedmethods
even with the worst context.

Performance comparison summary
The performance of CLIP-GENE depends on the context
that the user provided. However, in terms of performance
and prioritization, even with the context that performed
worst, CLIP-GENE was consistently superior to DEG, IA,
and GeneFriends.

Discussion
Transcriptome data from mouse models with certain
genes knocked out are widely used to investigate gene
functions in terms of phenotypes. In order to determine
genes that are affected by the knocked out TF, both select-
ing candidate genes and prioritizing genes are necessary.
Only three tools are available for the mouse data, but none
of these tools was appropriate to prioritize genes of user’s
interest from knockout data. In this study, we present a
novel web service that select and prioritize the candidate
genes in terms of the user’s experimental context. Two
major contributions are:

• CLIP-GENE allows researchers to specify the
experimental conditions in a set of keywords. Our
system automatically determines relevance between
the keywords and genes so that we can provide
rankings of the candidate genes in the userŠs context.

• CLIP-GENE provides a comprehensive web service
for the mouse knockout experiments by integrating
multiple resources into a single framework: mouse
TF network, SNV information, PPI network, and
literature information.

We believe that CLIP-gene will be useful for character-
izing functions of TFs in mouse studies.

Availability and requirements
Project name: CLIP-GENE
Project home page: http://epigenomics.snu.ac.kr/CLIP-
GENE
Requirements: Internet Explorer, Chrome

Materials
Analyzing RNA-seq data: alignment to DEG calculation
We used mice RNA-seq dataset of GSE47851 [19],
GSE54932 [24], andGSE53398 [25] that are retrieved from
Gene Expression Omnibus (GEO) [32]. We used these
three independent dataset to validate the performance of
CLIP-GENE. Trim galore [33] was used for quality control
while RSEM (v1.2.19) [34] is used for aligning reads to the
mmu10 mouse reference genome. DEGs were analyzed by

http://epigenomics.snu.ac.kr/CLIP-GENE
http://epigenomics.snu.ac.kr/CLIP-GENE
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Table 2 Performance of CLIP-GENE while analyzing GSE54932 (Setd2 KO)

Methods Precision Recall F-measure

DEG 0.0099 0.5238 0.0195

IA 0.0183 0.1905 0.0333

GeneFriends 0.0015 0.5238 0.0031

CLIP-GENE (Endodermal differentiation*) 0.2083 0.2381 0.2222

CLIP-GENE (Cell proliferation) 0.0252 0.3333 0.0468

CLIP-GENE (DNA mismatch repair) 0.1304 0.1429 0.1364

CLIP-GENE (Histone modification) 0.0408 0.1905 0.0672

The best performed measurement is marked with a star (*) with a bold text

using EBSeq [35], a tool embedded in RSEM. Each tool
was executed with a default option.

TF network construction
The TF network describes the control mechanism of
genes and it can be used as a blue print to understand the
relationship between target genes and regulatory genes
[36]. TF network is particularly useful when the knockout
gene is TF. CLIP-GENE uses TF network to select candi-
date DEG genes by following edges between TF and target
genes. TF network used for CLIP-GENE was constructed
using normal inbred mice data that vary in strains,
developmental stage, and tissues (150 samples of wild
type mice RNA-seq data from 17 independent studies)
[37–53]. NARROMI [54] was used for the TF network
construction. Since NARROMI requires a transcription
factor list and a gene list as input, we used a transcription
factors list (including co-factors) from Animal Transcrip-
tion Factor Database [55].

Variant calling
Genome Analysis Tool Kit (GATK v3.3.0) [56] was used
for calling variants from RNA-seq data. We performed
GATK best practice workflows with default options.
While processing the GATK RNA-seq pipeline, we used

Table 3 Performance of CLIP-GENE while analyzing GSE53398
(Barx2 KO)

Methods Precision Recall F-measure

DEG 0.0071 0.7872 0.0142

IA 0.0111 0.3617 0.0215

GeneFriends 0.0036 0.617 0.0071

CLIP-GENE (Myoblast progeny*) 0.1818 0.0426 0.069

CLIP-GENE (Muscle maintenance) 0.0476 0.0426 0.0449

CLIP-GENE (Chondrogensis) 0.1667 0.0426 0.0678

CLIP-GENE (Morphogenesis) 0.0217 0.4255 0.0412

The best performed measurement is marked with a star (*) with a bold text

STAR (v2.4.0) [57] for aligning the reads, and Picard
(v1.115) for marking the duplicates and sorting the reads.

Biomedical entity search tool
BEST [17] API was utilized for calculating the relevance
score of two different keywords. Performed 6th of July,
2016. Please note that relevance score could be calculated
different due to the status of PubMed.

Reviewers’ comments
Reviewer 1: Dr. Sandor Pongor
Summary : The ms of Hur et al. describes a gene prior-
itization server designed for evaluating mouse knockout
experiments. As the authors point out, general prioritiza-
tion tools can not easily be used for mouse knockout data.
The authors’ solution to the problem is to design a mouse-
specific transcription factor network based on a variety
heterogeneous data, and integrating it with another sin-
gle nucleotide variant dataset. This extended network is
used to prioritizing genes in a particular manner, taking in
consideration the functional context.
Recommendations: This is a complex workflow which

is not easily understood by the lay users, for instance it is
not straightforward if a good performance is due the new
data network, or the algorithm used by the server. In any
case, the authors show that their prioritization method
works better than other state/of/the art methodologies
which were not explicitly designed for mouse experi-
ments. The manuscript would benefit from the discussing
some of the above issues, also it may mementioned, if and
to what extent the differences found between the various
methods are statistically significant.
Authors’ response: We highly appreciate the thoughtful

comment. In order to determine whether the performance
differences are due to the network, we performed addi-
tional experiments by excluding the network and also
by utilizing other network. As a result, we found that
CLIP-GENE has dependency to the network. CLIP-GENE
performed better when the network information was uti-
lized (Additional file 1: Table S1) for Setd2 and Barx2 KO
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Table 4 Gene prioritization results of CLIP-GENE at GSE47851 (Gata3 KO) data

Context: Context: Context: Context:
Reported gene Immune regulation* Inflammatory response Cell differentiation Cell proliferation

Relb 144 56 117 209

Nfkb2 - - - -

Tnfrsf9 236 246 408 751

Tnfrsf21 - - - -

Icos 16 44 9 66

Cysltr1 186 282 392 638

Kit - - - -

Il1r2 - 203 - 483

Il13 4 37 44 125

Il5 5 50 52 149

Areg 71 87 154 96

Il1rl1 67 109 237 507

Ccr8 108 88 281 643

Tph1 216 180 86 222

Htr1b - - - -

Cd244 - - - -

Lta 19 5 122 203

Il10 8 4 47 74

Tnf 1 1 1 2

Nfkbia - 33 341 563

Cdkn2b 78 256 255 122

Lif - - - 402

Il2ra 84 206 88 546

Il9r 165 351 398 -

Il24 - 436 343 -

reproduced true positives/
predicted candidates 16/260 19/536 18/613 18/896

The table represents how CLIP-GENE succeed to reproduce and prioritize the reported genes from the data produced study [19]. Genes that are ranked in top 10 are marked
with bold font while star (*) represents best performed context

data. It was notable that the network did not decreased
the recall rate. However, the adapted network was less
effective for Gata3 KO data as it increased the num-
ber of false negatives (Additional file 1: Table S1). In
order to estimate the differences by network, we addition-
ally tested CLIP-GENE with another network, RegNetwork
[58], an integrative regulatory network that assembled reg-
ulatory information from multiple databases. When we
used RegNetwork instead of our network, we found that
CLIP-GENE with RegNetwork have increased the number
of false negatives and the performance dropped with the
best context while it performed better with the worst con-
text on Gata3 and Setd2 KO data (Additional file 1: Table
S2). In addition, CLIP-GENE with RegNetwork generally
performed better in Barx2 KO data, but the differences are
small (Additional file 1: Table S2).

In summary, we confirmed that network information
is one of the major factor that benefits the precision of
CLIP-GENE by rejecting many false positives for most of
the data. However, it is considerable that recall decreases
for certain data and the performance differs when differ-
ent network is applied. Therefore, we have implemented
CLIP-GENE (package version) so that advanced users can
provide network topology as input.

Reviewer 2: Dr. Sanghyuk Lee
Summary : This manuscript describes a web server
application for gene selection and prioritization for
mouse TF knockout experiments. The flow of analysis
pipeline is sound and several interesting ideas were imple-
mented including (i) trimming out irrelevant genes using
mouse TF network pre-calculated from massive mouse
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Table 5 Gene prioritization results of CLIP-GENE at GSE54932 (Setd2 KO) data

Context: Context: Context: Context:
Reported gene Endodermal differentiation* Cell Proliferation DNA mismatch repair Histone modification

Gata6 3 40 15 23

Sox7 6 72 - -

Sox17 - - - -

Dab2 16 44 - 65

Cubn - - - -

Cdx2 7 19 5 13

Psx1 - - - -

Fgf5 - - - -

Pax6 - - - -

T 2 2 1 2

Gata4 - - - -

Hnf1b - 213 - -

Colora1 - - - -

Myo6 - - - -

Pfn2 - - - -

Cldn1 - - - -

Vil1 - - - -

Fgfr3 - - - -

Fgfr4 - 28 - -

Arc - - - -

Cd97 - - - -

reproduced true positives/
predicted candidates 5/24 7/278 3/23 4/98

The table represents how CLIP-GENE succeed to reproduce and prioritize the reported genes from the data produced study [24]. Genes that are ranked in top 10 are marked
with bold font while star (*) represents best performed context

transcriptome data, (ii) gene ranking that reflects the bio-
logical contexts defined by user-supplied keywords, and
(iii) gene prioritization using protein-protein interaction
network. The application should be useful for analyzing
mouse TF knockout experiments. Authors are recom-
mended to address the following points to enhance the
quality of manuscript.
Recommendations : The performance test was focused

solely on F-measure which is a combined measure of pre-
cision and recall. Looking into the details in Tables 1, 2
and 3 shows that the precision of CLIP-GENE is far supe-
rior to others with lower recall rate regardless of context
keywords. This is important because false negatives are
the main problems for most users (molecular biologists
or doctors). Adding a case with no keyword in CLIP-
GENE would help readers estimate the extent of positive
contribution from proper context words.
Authors’ response: In order to estimate the performance

when the context is not provided to CLIP-GENE, we
excluded BEST during the analysis and ranked genes only
with PPI shortest path information.

As a result, we found that CLIP-GENE generally per-
formed better when the context was given (Additional file 1:
Table S3). Contexts was a major contributing factor on
increasing the precision by rejecting high number of false
positives. For example, in terms of F-measure, Setd2 KO
data performed 8.8 times better with the best context, and
2.7 times better with the worst context. Also, we would like
to emphasize that ranking genes without context (without
BEST) is not effective. When we prioritize genes only with
PPI shortest path information, a number of genes are prior-
itized with same ranks. This is because PPI-based ranking
relies on the length of the shortest path. On a dense net-
work such as PPI, it is natural that many nodes will have
the same shortest path length. For instance, when BEST is
not used, 210 genes among 1778 candidates was ranked as
first and 1568 genes ranked as second for Gata3 KO data.
Authors need to analyze the main reasons for the

reduced recall rates of CLIP-GENE.
Authors’ response: We determined that context was

the major contributing factor for recall rates. As BEST
finds the relationship between two different keywords on
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Table 6 Gene prioritization results of CLIP-GENE at GSE53398 (Barx2 KO) data

Context: Context: Context: Context:
Reported gene Myoblast progeny* Muscle maintenance Chondrogensis Morphogenesis

Gdnf - - - -

Id2 - - - 271

Mmp9 9 29 8 129

Smo - - - -

Sox2 - - - 9
Wisp1 - - - -

Wisp2 - - - -

Ahr - - - -

Axin2 - - - -

Cacna2d3 - - - -

Ccnd1 - - - -

Ccnd2 - - - -

Ctgf - - - -

Dlk1 - - - 319

Fgf7 - - - -

Fst - - - 307

Fzd7 - - - -

Gdf5 - - - -

Igf2 - - - -

Klf5 - - - 96

Pdgfra 4 8 4 573

Pitx2 - - - 4
Tgfb3 - - - 780

Wnt5a - - - -

Fzd4 - - - 193

Fzd6 - - - -

Sfrp1 - - - 188

Tle2 - - - -

Dvl1 - - - 168

Nkd1 - - - -

Porcn - - - 367

Wif1 - - - 74

Wnt4 - - - -

Axin1 - - - -

Fstl1 - - - -

Fstl3 - - - -

Hey1 - - - 122

Hey2 - - - -

Heyl - - - -

Hes1 - - - 34

Hes6 - - - -

Snai1 - - - 295

Snai2 - - - 399

Snai3 - - - 526

Fos - - - -

Nrap - - - -

Id1 - - - 205

reproduced true positives/
predicted candidates 2/11 2/42 2/12 20/923

The table represents how CLIP-GENE succeed to reproduce and prioritize the reported genes from the data produced study [25]. Genes that are ranked in top 10 are marked
with bold font while star (*) represents best performed context
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PubMed, BEST rejects candidate genes if the relationship
of keywords is not on the literature. Therefore, the recall
rate decreases when the context is inappropriate or the
number of studies are few. It is noticeable that CLIP-GENE
generally have low recall rate on Barx2 KO data than
other datasets (Additional file 1: Table S3), where BEST
recognize 26 articles for Barx2 while others had more
articles (1131 articles for Gata3, 109 articles for Setd2).

The way to specify context seems to be limited. Many
users would want to provide a list of keywords. For
example, providing ‘immune regulation’ and ‘inflamma-
tory response’ together should define better the molecular
context of GATA3 KO mice. I am also curious about
what the precision and recall rates would be for such
combination of keywords.
Authors’ response:We found that CLIP-GENE performs

rather unpredictable when we give context with the combi-
nation of contexts (combining the best and worst performed
context such as “Immune regulation cell proliferation”).
The combination of contexts have slightly increased its
performance of CLIP-GENE for Gata3 and Barx2, but
decreased in Setd2 KO data (Additional file 1: Table S3).
Also, the combination of contexts have showed lower recall
rate, indicating that the combination of contexts were
found less in the literature than a single context.
Authors need to explain the choice of context keywords

for the SETD2 KO case. The most well-known functions
of SETD2 are ‘histone modifications’ and ‘DNAmismatch
repair’ in my opinion. But these two key words performed
worse than ‘endodermal differentiation’.
Authors’ response: We included more details into the

manuscript to explain why this happened. We agree that
’histone modifications’ is one of the most well-known func-
tions for Setd2. However, we would like to emphasize that
the GSE54932 study mainly focused on the endodermal
differences when Setd2 is silenced and reported genes that
were related to them. As we used these reported genes as
true positive, we believe that it is natural that the context
of ’endodermal differentiation’ performed better than
histone modification.

The gene expression values are never used after the
initial step of selecting DEGs. I guess that using gene
expression in the prioritization step would help the per-
formance of the program. This might be beyond the scope
of current web server because expression values are not
input data, but authors are recommended to give a brief
review or comparison on such methods.
Authors’ response: Thank you for sharing us your

insightful thought. Currently, prioritizing genes with the
combination of expression profile andmutiple data sources
still remains a challanging task [8]. However, we do plan

to use explicit expression profile during the prioritization
process for the future release. We will continue to work on
this important topic.

Additional file

Additional file 1: Table S1. Performance comparison of CLIP-GENE
(excluding and including network) while analyzing Gata3, Setd2, and Barx2
knockout data. Table S2. Performance comparison of CLIP-GENE (applied
network and RegNetwork) while analyzing Gata3, Setd2, and Barx2
knockout data. Table S3. Performance comparison of CLIP-GENE
(no-context, best context, worst context, combination of context) while
analyzing Gata3, Setd2, and Barx2 knockout data. (DOCX 20.4 kb)
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