11 research outputs found

    Aligned Silver Nanowire Networks as Transparent Electrodes for High-Performance Optoelectronics and Electronic Devices

    Get PDF
    Department of Energy EngineeringFlexible transparent electrode is an essential component for several kinds of electronic and optoelectronic applications, such as organic solar cells (OSCs), perovskite solar cells (PSCs), organic light-emitting diodes (OLEDs), touch sensors, and electronic skins (E-skins). Although conventional indium tin oxide (ITO) has been widely used in commercial transparent electrodes, it still shows a limitation in the fabrication of flexible transparent electrodes for applications in flexible/wearable electronic devices because of their inherent brittleness. Among various alternatives of ITO, silver nanowire (AgNW) network has been considered as promising conductive nano-material due to their high electrical conductivity, excellent transmittance, and mechanical flexibility that can be readily deposited by cost-effective and large-scale solution process. However, random AgNW networks prepared by solution processing have several drawbacks, such as high junction resistance between nanowires (NWs), low transmittance, haze issues, and rough surface morphologies, resulting in a degradation of the device performance. Electrical and optical properties of random AgNW networks can be strongly affected by controlling NW density, electrical current path, and junction resistance related to conductive percolated networks. Therefore, manipulating the assembled structure of AgNW network can provide powerful platforms to realize ideal flexible transparent electrodes with high electrical conductivity, superior transmittance, and smooth surface morphologies for achieving high-performance electronic and optoelectronic device. In this thesis, we introduce aligned AgNW transparent electrodes and their applications in flexible optoelectronic and functional electronic devices. Firstly, Chapter 1 introduces the research tends in transparent electrodes and several issues of AgNW networks that should be carefully considered in the fabrication for their potential device applications. In chapter 2, we demonstrate the capillary printing technique to make highly aligned AgNW network to fabricate high-performance transparent electrodes for improving device efficiency of optoelectronic devices including OSCs and OLEDs. In Chapter 3, we demonstrate the fabrication of nanoparticle (NP)-enhanced plasmonic AgNW electrode for high-performance optoelectronic devices in which the NP-NW hybrid plasmonic system generates gap plasmonic coupling which induces a large electric field enhancement, resulting in an improvement of the device efficiency in both OSC and OLED devices. In Chapter 4, we demonstrate the fabrication of ultrathin and flexible perovskite solar cell foils with orthogonal AgNW electrodes, which exhibits high power-per-weight performance as well as a conformal contact capability to curvilinear surface. In Chapter 5, we introduce a large-scale assembly technique to uniformly align AgNW arrays for the fabrication of large area transparent electrodes, where cross-aligned AgNW network shows better electrical and optical properties as well as large-scale uniformity than random AgNW network. For the proof of the concept demonstration, we fabricated a flexible force-sensitive touch screen panel integrated with a mechanochromic polymer film. Finally, we introduce a transparent and conductive nano-membrane (NM) incorporated with orthogonal AgNW arrays in Chapter 6, which exhibits enhanced electrical and mechanical properties than pure polymeric NMs. To show the unique properties of these hybrid NMs for potential device applications, we demonstrate skin-attachable thermoacoustic-based NM loudspeaker and wearable NM microphone, both of which show much improved device performances compared to conventional thin film-based devices. In this thesis, studies on aligned AgNW transparent electrodes and their device applications could be further expanded for diverse flexible and wearable optoelectronic and electronic applications, such as conformal wearable sensors, healthcare monitoring devices, and wearable plasmonic devices.clos

    Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones

    Get PDF
    We demonstrate ultrathin, transparent, and conductive hybrid nanomembranes (NMs) with nanoscale thickness, consisting of an orthogonal silver nanowire array embedded in a polymer matrix. Hybrid NMs significantly enhance the electrical and mechanical properties of ultrathin polymer NMs, which can be intimately attached to human skin. As a proof of concept, we present a skin-attachable NM loudspeaker, which exhibits a significant enhancement in thermoacoustic capabilities without any significant heat loss from the substrate. We also present a wearable transparent NM microphone combined with a micropyramid-patterned polydimethylsiloxane film, which provides excellent acoustic sensing capabilities based on a triboelectric voltage signal. Furthermore, the NM microphone can be used to provide a user interface for a personal voice-based security system in that it can accurately recognize a user???s voice. This study addressed the NM-based conformal electronics required for acoustic device platforms, which could be further expanded for application to conformal wearable sensors and health care devices

    Highly Stretchable Sound-in-Display Electronics Based on Strain-Insensitive Metallic Nanonetworks

    No full text
    The growing importance of human-machine interfaces and the rapid expansion of the internet of things (IoT) have inspired the integration of displays with sound generation systems to afford stretchable sound-in-display devices and thus establish human-to-machine connections via auditory system visualization. Herein, the synchronized generation of sound and color is demonstrated for a stretchable sound-in-display device with electrodes of strain-insensitive silver nanowires (AgNWs) and emissive layers of field-induced inorganic electroluminescent (EL) phosphors. In this device, EL phosphors embedded in a dielectric elastomer actuator (DEA) emit light under alternating-current bias, while audible sound waves are simultaneously generated via DEA actuation along with input sound signals. The electroluminescence and sound-generation performances of the fabricated device are highly robust and reliable, being insensitive to stretch-release cycling because of the presence of the AgNW stretchable electrodes. The presented principle of integrating light emission and acoustic systems in a single stretchable device can be further expanded to realize sound-in-display electronics for IoT and human-machine interface applications

    Solution-Processable, High-Performance Flexible Electroluminescent Devices Based on High-k Nanodielectrics

    No full text
    Flexible alternating-current electroluminescent (ACEL) devices have attracted considerable attention for their ability to produce uniform light emission under bent conditions and have enormous potential for applications in back lighting panels, decorative lighting in automobiles, and panel displays. Nevertheless, flexible ACEL devices generally require a high operating bias, which precludes their implementation in low power devices. Herein, solution-processed La-doped barium titanate (BTO:La) nanocuboids (???150 nm) are presented as high dielectric constant (high-k) nanodielectrics, which can enhance the dielectric constant of an ACEL device from 2.6 to 21 (at 1 kHz), enabling the fabrication of high-performance flexible ACEL devices with a lower operating voltage as well as higher brightness (???57.54 cd m???2 at 240 V, 1 kHz) than devices using undoped BTO nanodielectrics (???14.3 cd m???2 at 240 V, 1 kHz). Furthermore, a uniform brightness across the whole panel surface of the flexible ACEL devices and excellent device reliability are achieved via the use of uniform networks of crossaligned silver nanowires as highly conductive and flexible electrodes. The results offer experimental validation of high-brightness flexible ACELs using solution-processed BTO:La nanodielectrics, which constitutes an important milestone toward the implementation of high-k nanodielectrics in flexible displays

    Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens

    No full text
    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 ?? 20 cm2), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 ?? sq-1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 ?? sq-1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.clos

    Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices

    No full text
    Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Omega sq(-1)) as compared to random AgNW networks (92.9%, 20 Omega sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes.close0

    Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range

    No full text
    Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa(-1), 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device

    Work Function Tuning of Zinc–Tin Oxide Thin Films Using High-Density O2 Plasma Treatment

    No full text
    Work function tuning has a significant influence on the performance of semiconductor devices, owing to the formation of potential barriers at the interface between metal-semiconductor junctions. In this work, we introduce a technique for tuning the work function of ZnSnO thin films using high-density O2 plasma treatment. The work function and chemical composition of the ZnSnO thin film surfaces were investigated with regards to plasma treatment time through UPS/XPS systems. The optical band gap was estimated using Tauc’s relationship from transmittance data. The work function of Zn0.6Sn0.4O thin film increased from 4.16 eV to 4.64 eV, and the optical band gap increased from 3.17 to 3.23 eV. The surface of Zn0.6Sn0.4O thin films showed a smooth morphology with an average of 0.65 nm after O2 plasma treatment. The O2 plasma treatment technique exhibits significant potential for application in high-performance displays in optical devices, such as thin-film transistors (TFTs), light-emitting diodes (LEDs), and solar cells

    High-Resolution Filtration Patterning of Silver Nanowire Electrodes for Flexible and Transparent Optoelectronic Devices

    No full text
    Silver nanowire (AgNW) electrodes attract significant attention in flexible and transparent optoelectronic devices; however, high-resolution patterning of AgNW electrodes remains a considerable challenge. In this study, we have introduced a simple technique for high-resolution solution patterning of AgNW networks, based on simple filtration of AgNW solution on a patterned polyimide shadow mask. This solution process allows the smallest pattern size of AgNW electrodes, down to a width of 3.5 pm. In addition, we have demonstrated the potential of these patterned AgNW electrodes for applications in flexible optoelectronic devices, such as photodetectors. Specifically, for flexible and semitransparent UV photodetectors, AgNW electrodes are embedded in sputtered ZnO films to enhance the photocurrent by light scattering and trapping, which resulted in a significantly enhanced photocurrent (up to 800%) compared to devices based on AgNW electrodes mounted on top of ZnO films. In addition, our photodetector could be operated well under extremely bent conditions (bending radius of approximately 770 mu m) and provide excellent durability even after 500 bending cycles
    corecore