96 research outputs found

    Regional characteristics of fine aerosol mass increase elucidated from long-term observations and KORUS-AQ campaign at a Northeast Asian background site

    Get PDF
    Funding Information: This research was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (MSIT) (NRF2020M3G1A111499813). S. Lim was supported by the National Research Foundation of Korea (NRF) from the Ministry of Science and ICT (2018R1D1A1B07050849 and 2021R1C1C2011543). M. Lee thanks to the support by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF2020R1A2C301459213). S.-W. Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A1B06032548). Funding to K.-S. Kang was provided by the National Institute of Environmental Research (NIER-RP2017-166). Funding Information: This research was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (MSIT) (NRF2020M3G1A111499813). S. Lim was supported by the National Research Foundation of Korea (NRF) from the Ministry of Science and ICT (2018R1D1A1B07050849 and 2021R1C1C2011543). M. Lee thanks to the support by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF2020R1A2C301459213). S.-W. Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A1B06032548). Funding to K.-S. Kang was provided by the National Institute of Environmental Research (NIER-RP2017-166). Publisher Copyright: © 2022 The Author(s)Northeast Asia has suffered from severe PM2.5 pollution and the exact mechanisms have yet to be fully understood. Here, we investigated the transformation processes of submicron aerosols using a 4-year data set obtained at Jeju, a Northeast Asian background site. The diurnal-cycle constrained empirical orthogonal function analysis of nanoparticle size-number distribution distinguished 2 modes: burst of nucleation-Aitken particles and increase in accumulation mode particles, representing “new particle formation and growth” and “PM2.5 mass increase,” respectively. In these events, aerosol and meteorological characteristics changed progressively over several days, revealing that the PM2.5 mass increase is an episodic event occurring on a regional scale. The increase in PM2.5 mass was accompanied by an increase in aerosol liquid water content, which correlated well with SO4-2 and NO3, and a decrease in incoming solar radiation (-14.1 Wm-2 day-1) constituting a positive feedback. The “transport/haze” episode of KOREA-U.S. Air Quality campaign corresponds to “PM2.5 mass increase,” during which the vertical evolution of particles demonstrates that nanoparticles ≥3.5 nm were entrained into the shallow boundary layer upon vertical mixing and converted to accumulation-mode particles ≥0.3 mm at relative humidity (RH) exceeding the deliquescence RH of secondary inorganic aerosol (SIA). Coincidently, at ground, the coating thickness of refractory black carbon (rBC) (48 ± 39 nm) and SIA concentration increased. Furthermore, the diameter of rBC (180-220 nm)-containing particle in core-shell configuration linearly increased with PM2.5 mass, reaching 300-400 nm at PM2.5 ≥ 40 mg m-3.This observational evidence suggests that the thick coating of rBCs resulted from the active conversion of condensable gases into the particulate phase on the rBC surface, thereby increasing the mass of the accumulation-mode aerosol. Consequently, this result complies with the strategy to reduce primary emissions of gaseous precursors for SIA and particulates such as rBC as a way to effectively mitigate haze pollution as well as climate change in Northeast Asia.Peer reviewe

    Expression of aldo-keto reductase family 1 member C1 (AKR1C1) gene in porcine ovary and uterine endometrium during the estrous cycle and pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aldo-keto reductase family 1 member C1 (AKR1C1) belongs to a superfamily of NADPH-dependent reductases that convert a wide range of substrates, including carbohydrates, steroid hormones, and endogenous prostaglandins. The 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a member of AKR family. The aims of this study were to determine its expression in the ovary and uterus endometrium during the estrous cycle and pregnancy.</p> <p>Methods</p> <p>Rapid amplification of cDNA ends (RACE) experiments were performed to obtain the 5' and 3' ends of the porcine <it>20alpha-HSD </it>cDNA. Reverse-transcriptase-PCR (RT-PCR), real-time PCR, northern blot analysis, and western blot analysis were performed to examine the expression of porcine 20alpha-HSD. Immunohistochemical analysis was also performed to determine the localization in the ovary.</p> <p>Results</p> <p>The porcine 20alpha-HSD cDNA is 957 bp in length and encodes a protein of 319 amino acids. The cloned cDNA was virtually the same as the porcine <it>AKR1C1 </it>gene (337 amino acids) reported recently, and only differed in the C-terminal region (the <it>AKR1C1 </it>gene has a longer C-terminal region than our sequence). The <it>20alpha-HSD </it>gene (from now on referred to as <it>AKR1C1</it>) cloned in this paper encodes a deletion of 4 amino acids, compared with the C-terminal region of <it>AKR1C1 </it>genes from other animals. Porcine AKR1C1 mRNA was expressed on day 5, 10, 12, 15 of the cycle and 0-60 of pregnancy in the ovary. The mRNA was also specifically detected in the uterine endometrium on day 30 of pregnancy. Western blot analysis indicated that the pattern of AKR1C1 protein in the ovary during the estrous cycle and uterus during early pregnancy was similar to that of <it>AKR1C1 </it>mRNA expression. The recombinant protein produced in CHO cells was detected at approximately 37 kDa. Immunohistochemical analysis also revealed that pig AKR1C1 protein was localized in the large luteal cells in the early stages of the estrous cycle and before parturition.</p> <p>Conclusions</p> <p>Our study demonstrated that AKR1C1 mRNA and protein are coordinately expressed in the luteal cell of ovary throughout the estrous cycle and in the uterus on day 30 of pregnancy. Thus, the porcine AKR1C1 gene might control important mechanisms during the estrous cycle.</p

    A wide variation of the quality of colonoscopy reporting system in the real clinical practice in southeastern area of Korea

    Get PDF
    Background/AimsEstablishment of a colonoscopy reporting system is a prerequisite to determining and improving quality. This study aimed to investigate colonoscopists' opinions and the actual situation of a colonoscopy reporting system in a clinical practice in southeastern area of Korea and to assess the factors predictive of an inadequate reporting system.MethodsPhysicians who performed colonoscopies in the Daegu-Gyeongbuk province of Korea and were registered with the Korean Society of Gastrointestinal Endoscopy (KSGE) were interviewed via mail about colonoscopy reporting systems using a standardized questionnaire.ResultsOf 181 endoscopists invited to participate, 125 responded to the questionnaires (response rate, 69%). Most responders were internists (105/125, 84%) and worked in primary clinics (88/125, 70.4%). Seventy-one specialists (56.8%) held board certifications for endoscopy from the KSGE. A median of 20 colonoscopies (interquartile range, 10–47) was performed per month. Although 88.8% of responders agreed that a colonoscopy reporting system is necessary, only 18.4% (23/125) had achieved the optimal reporting system level recommended by the Quality Assurance Task Group of the National Colorectal Cancer Roundtable. One-third of endoscopists replied that they did not use a reporting document for the main reasons of "too busy" and "inconvenience." Non-endoscopy specialists and primary care centers were independent predictive factors for failure to use a colonoscopy reporting system.ConclusionsThe quality of colonoscopy reporting systems varies widely and is considerably suboptimal in actual clinical practice settings in southeastern Korea, indicating considerable room for quality improvements in this field

    Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps

    Get PDF
    Abstract Background To take advantages, such as multiplex capacity, non-photobleaching property, and high sensitivity, of surface-enhanced Raman scattering (SERS)-based in vivo imaging, development of highly enhanced SERS nanoprobes in near-infrared (NIR) region is needed. A well-controlled morphology and biocompatibility are essential features of NIR SERS nanoprobes. Gold (Au)-assembled nanostructures with controllable nanogaps with highly enhanced SERS signals within multiple hotspots could be a breakthrough. Results Au-assembled silica (SiO2) nanoparticles (NPs) (SiO2@Au@Au NPs) as NIR SERS nanoprobes are synthesized using the seed-mediated growth method. SiO2@Au@Au NPs using six different sizes of Au NPs (SiO2@Au@Au50–SiO2@Au@Au500) were prepared by controlling the concentration of Au precursor in the growth step. The nanogaps between Au NPs on the SiO2 surface could be controlled from 4.16 to 0.98nm by adjusting the concentration of Au precursor (hence increasing Au NP sizes), which resulted in the formation of effective SERS hotspots. SiO2@Au@Au500 NPs with a 0.98-nm gap showed a high SERS enhancement factor of approximately 3.8 × 106 under 785-nm photoexcitation. SiO2@Au@Au500 nanoprobes showed detectable in vivo SERS signals at a concentration of 16μg/mL in animal tissue specimen at a depth of 7mm. SiO2@Au@Au500 NPs with 14 different Raman label compounds exhibited distinct SERS signals upon subcutaneous injection into nude mice. Conclusions SiO2@Au@Au NPs showed high potential for in vivo applications as multiplex nanoprobes with high SERS sensitivity in the NIR region. Graphical Abstrac

    Natural Form of Noncytolytic Flexible Human Fc as a Long-Acting Carrier of Agonistic Ligand, Erythropoietin

    Get PDF
    Human IgG1 Fc has been widely used as a bioconjugate, but exhibits shortcomings, such as antibody- and complement-mediated cytotoxicity as well as decreased bioactivity, when applied to agonistic proteins. Here, we constructed a nonimmunogenic, noncytolytic and flexible hybrid Fc (hyFc) consisting of IgD and IgG4, and tested its function using erythropoietin (EPO) conjugate, EPO-hyFc. Despite low amino acid homology (20.5%) between IgD Fc and IgG4 Fc, EPO-hyFc retained “Y-shaped” structure and repeated intravenous administrations of EPO-hyFc into monkeys did not generate EPO-hyFc-specific antibody responses. Furthermore, EPO-hyFc could not bind to FcγR I and C1q in contrast to EPO-IgG1 Fc. In addition, EPO-hyFc exhibited better in vitro bioactivity and in vivo bioactivity in rats than EPO-IgG1 Fc, presumably due to the high flexibility of IgD. Moreover, the mean serum half-life of EPO-hyFc(H), a high sialic acid content form of EPO-hyFc, was approximately 2-fold longer than that of the heavily glycosylated EPO, darbepoetin alfa, in rats. More importantly, subcutaneous injection of EPO-hyFc(H) not only induced a significantly greater elevation of serum hemoglobin levels than darbepoetin alfa in both normal rats and cisplatin-induced anemic rats, but also displayed a delayed time to maximal serum level and twice final area-under-the-curve (AUClast). Taken together, hyFc might be a more attractive Fc conjugate for agonistic proteins/peptides than IgG1 Fc due to its capability to elongate their half-lives without inducing host effector functions and hindering bioactivity of fused molecules. Additionally, a head-to-head comparison demonstrated that hyFc-fusion strategy more effectively improved the in vivo bioactivity of EPO than the hyperglycosylation approach

    A Special Issue on

    No full text

    Constructing a Reference Genome in a Single Lab: The Possibility to Use Oxford Nanopore Technology

    No full text
    The whole genome sequencing (WGS) has become a crucial tool in understanding genome structure and genetic variation. The MinION sequencing of Oxford Nanopore Technologies (ONT) is an excellent approach for performing WGS and it has advantages in comparison with other Next-Generation Sequencing (NGS): It is relatively inexpensive, portable, has simple library preparation, can be monitored in real-time, and has no theoretical limits on reading length. Sorghum bicolor (L.) Moench is diploid (2n = 2x = 20) with a genome size of about 730 Mb, and its genome sequence information is released in the Phytozome database. Therefore, sorghum can be used as a good reference. However, plant species have complex and large genomes when compared to animals or microorganisms. As a result, complete genome sequencing is difficult for plant species. MinION sequencing that produces long-reads can be an excellent tool for overcoming the weak assembly of short-reads generated from NGS by minimizing the generation of gaps or covering the repetitive sequence that appears on the plant genome. Here, we conducted the genome sequencing for S. bicolor cv. BTx623 while using the MinION platform and obtained 895,678 reads and 17.9 gigabytes (Gb) (ca. 25× coverage of reference) from long-read sequence data. A total of 6124 contigs (covering 45.9%) were generated from Canu, and a total of 2661 contigs (covering 50%) were generated from Minimap and Miniasm with a Racon through a de novo assembly using two different tools and mapped assembled contigs against the sorghum reference genome. Our results provide an optimal series of long-read sequencing analysis for plant species while using the MinION platform and a clue to determine the total sequencing scale for optimal coverage that is based on various genome sizes
    corecore