2,177 research outputs found
Microstructure Design of Multifunctional Particulate Composite Materials using Conditional Diffusion Models
This paper presents a novel modeling framework to generate an optimal
microstructure having ultimate multifunctionality using a diffusion-based
generative model. In computational material science, generating microstructure
is a crucial step in understanding the relationship between the microstructure
and properties. However, using finite element (FE)-based direct numerical
simulation (DNS) of microstructure for multiscale analysis is extremely
resource-intensive, particularly in iterative calculations. To address this
time-consuming issue, this study employs a diffusion-based generative model as
a replacement for computational analysis in design optimization. The model
learns the geometry of microstructure and corresponding stress contours,
allowing for the prediction of microstructural behavior based solely on
geometry, without the need for additional analysis. The focus on this work is
on mechanoluminescence (ML) particulate composites made with europium ions and
dysprosium ions. Multi-objective optimization is conducted based on the
generative diffusion model to improve light sensitivity and fracture toughness.
The results show multiple candidates of microstructure that meet the design
requirements. Furthermore, the designed microstructure is not present in the
training data but generates new morphology following the characteristics of
particulate composites. The proposed approach provides a new way to
characterize a performance-based microstructure of composite materials
Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets
Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ºC has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ºC has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ºC has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ºC substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.This work was supported by the Dalian University of Technology through the program of the Sea-sky Scholar
Source/Drain Patterning FinFETs as Solution for Physical Area Scaling Toward 5-nm Node
A novel and feasible process scheme to downsize the source/drain (S/D) epitaxy of 5-nm node bulk fin-shaped field-effect transistors (FinFETs) were introduced by using fully-calibrated TCAD for the first time. The S/D epitaxy formed by selective epitaxial growth was diamond-shaped and occupied a large proportion of the device size irrespective of the active channel area. However, this problem was solved by patterning the low-k regions prior to S/D formation by preventing the lateral overgrowth of S/D epitaxy; the so-called S/D patterning (SDP). Its smaller S/D epitaxy decreased the average longitudinal channel stresses and drive currents for NFETs. However, the small diffusions of the boron dopants into the channel regions improved the short-channel effects and alleviated the drive current reduction for PFETs. Gate capacitances decreased greatly by reducing outer-fringing capacitances between the metal-gate stack and S/D regions. Through SPICE simulation based on the virtual source model, operation frequencies and dynamic powers of 15-stage ring oscillators were studied. SDP FinFETs have better circuit performances than the conventional and bottom oxide bulk FinFETs along with smaller active areas, promising for further area scaling through simple and reliable S/D process.11Ysciescopu
- …