2,177 research outputs found

    Microstructure Design of Multifunctional Particulate Composite Materials using Conditional Diffusion Models

    Full text link
    This paper presents a novel modeling framework to generate an optimal microstructure having ultimate multifunctionality using a diffusion-based generative model. In computational material science, generating microstructure is a crucial step in understanding the relationship between the microstructure and properties. However, using finite element (FE)-based direct numerical simulation (DNS) of microstructure for multiscale analysis is extremely resource-intensive, particularly in iterative calculations. To address this time-consuming issue, this study employs a diffusion-based generative model as a replacement for computational analysis in design optimization. The model learns the geometry of microstructure and corresponding stress contours, allowing for the prediction of microstructural behavior based solely on geometry, without the need for additional analysis. The focus on this work is on mechanoluminescence (ML) particulate composites made with europium ions and dysprosium ions. Multi-objective optimization is conducted based on the generative diffusion model to improve light sensitivity and fracture toughness. The results show multiple candidates of microstructure that meet the design requirements. Furthermore, the designed microstructure is not present in the training data but generates new morphology following the characteristics of particulate composites. The proposed approach provides a new way to characterize a performance-based microstructure of composite materials

    Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets

    Get PDF
    Titanium films have been deposited on stainless steel metal sheets using dc magnetron sputtering technique at different substrate temperatures. The structure of the titanium films strongly depend on the substrate temperature. The titanium film deposited at the substrate temperature lower than 300 ºC has a loose flat sheet grains structure and the titanium film prepared at the substrate temperature higher than 500 ºC has a dense nubby grains structure. The DSSC assembled using stainless steel sheet coated with titanium film deposited at high substrate temperature has a low charge transfer resistance in the TiO2/Ti interface and results in a high conversion efficiency. The DSSC assembled using stainless steel sheet coated with titanium film deposited at temperature higher than 500 ºC has higher conversion efficiency than that assembled using titanium metal sheet as the substrate. The maximum conversion efficiency, 2.26% is obtained for DSSC assembled using stainless steel sheet coated with titanium film deposited at 700 ºC substrate temperature, which is about 70% of the conversion efficiency of the FTO reference cell used in this study.This work was supported by the Dalian University of Technology through the program of the Sea-sky Scholar

    Source/Drain Patterning FinFETs as Solution for Physical Area Scaling Toward 5-nm Node

    Get PDF
    A novel and feasible process scheme to downsize the source/drain (S/D) epitaxy of 5-nm node bulk fin-shaped field-effect transistors (FinFETs) were introduced by using fully-calibrated TCAD for the first time. The S/D epitaxy formed by selective epitaxial growth was diamond-shaped and occupied a large proportion of the device size irrespective of the active channel area. However, this problem was solved by patterning the low-k regions prior to S/D formation by preventing the lateral overgrowth of S/D epitaxy; the so-called S/D patterning (SDP). Its smaller S/D epitaxy decreased the average longitudinal channel stresses and drive currents for NFETs. However, the small diffusions of the boron dopants into the channel regions improved the short-channel effects and alleviated the drive current reduction for PFETs. Gate capacitances decreased greatly by reducing outer-fringing capacitances between the metal-gate stack and S/D regions. Through SPICE simulation based on the virtual source model, operation frequencies and dynamic powers of 15-stage ring oscillators were studied. SDP FinFETs have better circuit performances than the conventional and bottom oxide bulk FinFETs along with smaller active areas, promising for further area scaling through simple and reliable S/D process.11Ysciescopu
    corecore