147 research outputs found

    Interactions and reaction within synthetic self-assembling molecular capsules

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1997.Includes bibliographical references.by Jongmin Kang.Ph.D

    Detection and monitoring of forest fires using Himawari-8 geostationary satellite data in South Korea

    Get PDF
    Geostationary satellite remote sensing systems are a useful tool for forest fire detection and monitoring because of their high temporal resolution over large areas. In this study, we propose a combined 3-step forest fire detection algorithm (i.e., thresholding, machine learning-based modeling, and post processing) using Himawari-8 geostationary satellite data over South Korea. This threshold-based algorithm filtered the forest fire candidate pixels using adaptive threshold values considering the diurnal cycle and seasonality of forest fires while allowing a high rate of false alarms. The random forest (RF) machine learning model then effectively removed the false alarms from the results of the threshold-based algorithm (overall accuracy ~99.16%, probability of detection (POD) ~93.08%, probability of false detection (POFD) ~0.07%, and 96% reduction of the false alarmed pixels for validation), and the remaining false alarms were removed through post-processing using the forest map. The proposed algorithm was compared to the two existing methods. The proposed algorithm (POD ~ 93%) successfully detected most forest fires, while the others missed many small-scale forest fires (POD ~ 50-60%). More than half of the detected forest fires were detected within 10 min, which is a promising result when the operational real-time monitoring of forest fires using more advanced geostationary satellite sensor data (i.e., with higher spatial and temporal resolutions) is used for rapid response and management of forest fires

    Harnessing instability to control wave propagation in phononic crystals and acoustic metamaterials

    Get PDF
    Artificially structured composite materials have the ability to manipulate the propagation of elastic waves due to the existence of band gaps, i.e., frequency ranges of strong wave attenuation. However, most configurations proposed to date cannot be tuned after the manufacturing process. We propose new strategies using elastic buckling mechanisms to design novel devices with in-situ adaptive properties that can be reversibly tuned. Buckling and large deformations can be effectively exploited to reversibly tune not only the width and location of band gaps, but also the directional preferences of the wave propagation, even for low-frequency elastic waves. Our proof-of-concept demonstrations also indicate that the proposed mechanisms work robustly over a wide range of length scales, opening avenues for the design of smart systems for applications, such as vibration/noise reduction, wave guiding, frequency modulation, and acoustic imaging

    Spin-driven stationary turbulence in spinor Bose-Einstein condensates

    Full text link
    We report the observation of stationary turbulence in antiferromagnetic spin-1 Bose-Einstein condensates driven by a radio-frequency magnetic field. The magnetic driving injects energy into the system by spin rotation and the energy is dissipated via dynamic instability, resulting in the emergence of an irregular spin texture in the condensate. Under continuous driving, the spinor condensate evolves into a nonequilibrium steady state with characteristic spin turbulence, while the low energy scale of spin excitations ensures that the sample's lifetime is minimally affected. When the driving strength is on par with the system's spin interaction energy and the quadratic Zeeman energy, remarkably, the stationary turbulent state exhibits spin-isotropic features in spin composition and spatial spin texture. We numerically show that ambient field fluctuations play a crucial role in sustaining the turbulent state within the system. These results open up new avenues for exploring quantum turbulence in spinor superfluid systems.Comment: 9 pages, 9 figure

    Post Herpetic Neuropathy of Sinuvertebral Nerve: A Case Report

    Get PDF
    Varicella-Zoster virus is a neurotropic virus of the herpes virus family that primarily affects sensory nerves. Herpes zoster causing sinuvertebral neuropathy has not been mentioned in the literature. A 55 years old man presented with low back pain, both buttocks, posterior thigh and leg pain over last 3 months. A straight leg raising test was positive on both sides. A left great toe dorsiflexion was decreased to 4/5. The VAS score at admission for back and leg pain was 7/10. The patient MRI was showing disc degeneration at L5-S1 level. We performed endoscopic interlaminar annuloplasty using radiofrequency ablation to denervate the sinuvertebral nerve attached to the annulus under epidural anesthesia. Patient symptoms completely relieved at the postoperative period and continued upto recent follow up of 6 months. The classical presentation of the patient after herpes zoster infection as back pain with referred leg pain, disc degeneration on MRI, intraoperative evidence of chronic neuropathy and almost complete improvement in patient symptoms after radiofrequency ablation makes it a first reported case of sinuvertebral neuropathy following herpes zoster infection

    Functional Coordination of BET Family Proteins Underlies Altered Transcription Associated With Memory Impairment in Fragile X Syndrome

    Get PDF
    Bromodomain and extraterminal proteins (BET) are epigenetic readers that play critical roles in gene regulation. Pharmacologic inhibition of the bromodomain present in all BET family members is a promising therapeutic strategy for various diseases, but its impact on individual family members has not been well understood. Using a transcriptional induction paradigm in neurons, we have systematically demonstrated that three major BET family proteins (BRD2/3/4) participated in transcription with different recruitment kinetics, interdependency, and sensitivity to a bromodomain inhibitor, JQ1. In a mouse model of fragile X syndrome (FXS), BRD2/3 and BRD4 showed oppositely altered expression and chromatin binding, correlating with transcriptional dysregulation. Acute inhibition of CBP/p300 histone acetyltransferase (HAT) activity restored the altered binding patterns of BRD2 and BRD4 and rescued memory impairment in FXS. Our study emphasizes the importance of understanding the BET coordination controlled by a balanced action between HATs with different substrate specificity

    MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation

    Get PDF
    G protein-coupled receptor (GPCR) signalling, including that involving apelin (APLN) and its receptor APLNR, is known to be important in vascular development. How this ligand–receptor pair regulates the downstream signalling cascades in this context remains poorly understood. Here, we show that mice with Apln, Aplnr or endothelial-specific Aplnr deletion develop profound retinal vascular defects, which are at least in part due to dysregulated increase in endothelial CXCR4 expression. Endothelial CXCR4 is negatively regulated by miR-139-5p, whose transcription is in turn induced by laminar flow and APLN/APLNR signalling. Inhibition of miR-139-5p in vivo partially phenocopies the retinal vascular defects of APLN/APLNR deficiency. Pharmacological inhibition of CXCR4 signalling or augmentation of the miR-139-5p-CXCR4 axis can ameliorate the vascular phenotype of APLN/APLNR deficient state. Overall, we identify an important microRNA-mediated GPCR crosstalk, which plays a key role in vascular development

    High-precision RNS-CKKS on fixed but smaller word-size architectures: theory and application

    Get PDF
    A prevalent issue in the residue number system (RNS) variant of the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption (HE) scheme is the challenge of efficiently achieving high precision on hardware architectures with a fixed, yet smaller, word-size of bit-length WW, especially when the scaling factor satisfies logΔ>W\log\Delta > W. In this work, we introduce an efficient solution termed composite scaling. In this approach, we group multiple RNS primes as q:=j=0t1q,jq_\ell:= \prod_{j=0}^{t-1} q_{\ell,j} such that logq,j<W\log q_{\ell,j} < W for 0j<t0\le j < t, and use each composite qq_\ell in the rescaling procedure as ctct/q\mathsf{ct}\mapsto \lfloor \mathsf{ct} / q_\ell\rceil. Here, the number of primes, denoted by tt, is termed the composition degree. This strategy contrasts the traditional rescaling method in RNS-CKKS, where each qq_\ell is chosen as a single logΔ\log\Delta-bit prime, a method we designate as single scaling. To achieve higher precision in single scaling, where logΔ>W\log\Delta > W, one would either need a novel hardware architecture with word size W2˘7>logΔW\u27 > \log\Delta or would have to resort to relatively inefficient solutions rooted in multi-precision arithmetic. This problem, however, doesn\u27t arise in composite scaling. In the composite scaling approach, the larger the composition degree tt, the greater the precision attainable with RNS-CKKS across an extensive range of secure parameters tailored for workload deployment. We have integrated composite scaling RNS-CKKS into both OpenFHE and Lattigo libraries. This integration was achieved via a concrete implementation of the method and its application to the most up-to-date workloads, specifically, logistic regression training and convolutional neural network inference. Our experiments demonstrate that single and composite scaling approaches are functionally equivalent, both theoretically and practically
    corecore