28 research outputs found

    Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser

    Get PDF
    Passively mode-locked fiber lasers have been intensively applied in various research fields. However, the passive mode-locking typically operates in free-running regime, which easily produces messy multiple pulses due to the fruitful nonlinear effects involved in optical fibers. Actively controlling those disordered pulses in a passively mode-locked laser is of great interest but rarely studied. In this work, we experimentally investigate a flexible pulse-spacing manipulation in the passively mode-locked multipulse fiber laser by both intracavity and extracavity methods. A tuning range of pulse spacing up to 1.5 ns is achieved. More importantly, continuous pulse-spacing modulation is successfully demonstrated through external optical injection. It is anticipated that the results can contribute to the understanding of laser nonlinear dynamics and pursuing the optimal performance of passively mode-locked fiber lasers for practical applications

    Combustion Synthesis of Large Bulk Nanostructured Ni 65

    Get PDF
    A large bulk nanostructured Ni65Al21Cr14 alloy with dimensions of Φ 100 mm × 6 mm was produced by combustion synthesis technique followed with rapid solidification. The Ni65Al21Cr14 alloy was composed of γ′-Ni3Al/γ-Ni(Al, Cr) eutectic matrix and γ-Ni(Al, Cr) dendrite. The eutectic matrix consisted of 80–150 nm cuboidal γ′-Ni3Al and 2–5 nm γ-Ni(Al, Cr) boundary. The dentrite was comprised of high-density growth twins with about 3–20 nm in width. The nanostructured Ni65Al21Cr14 alloy exhibited simultaneously high fracture strength of 2200 MPa and good ductility of 26% in compression test

    Toward Learning Model-Agnostic Explanations for Deep Learning-Based Signal Modulation Classifiers

    Get PDF
    Recent advances in deep learning (DL) have brought tremendous gains in signal modulation classification. However, DL-based classifiers lack transparency and interpretability, which raises concern about model's reliability and hinders the wide deployment in real-word applications. While explainable methods have recently emerged, little has been done to explain the DL-based signal modulation classifiers. In this work, we propose a novel model-agnostic explainer, Model-Agnostic Signal modulation classification Explainer (MASE), which provides explanations for the predictions of black-box modulation classifiers. With the subsequence-based signal interpretable representation and in-distribution local signal sampling, MASE learns a local linear surrogate model to derive a class activation vector, which assigns importance values to the timesteps of signal instance. Besides, the constellation-based explanation visualization is adopted to spotlight the important signal features relevant to model prediction. We furthermore propose the first generic quantitative explanation evaluation framework for signal modulation classification to automatically measure the faithfulness, sensitivity, robustness, and efficiency of explanations. Extensive experiments are conducted on two real-world datasets with four black-box signal modulation classifiers. The quantitative results indicate MASE outperforms two state-of-the-art methods with 44.7% improvement in faithfulness, 30.6% improvement in robustness, and 44.1% decrease in sensitivity. Through qualitative visualizations, we further demonstrate the explanations of MASE are more human interpretable and provide better understanding into the reliability of black-box model decisions

    Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators

    Get PDF
    Imaging speed and range are two important parameters for optical coherence tomography (OCT). A conventional video-rate centimeter-range OCT requires an optical source with hundreds of kHz repetition rate and needs the support of broadband detectors and electronics (>1 GHz). In this paper, a type of video-rate centimeter-range OCT system is proposed and demonstrated based on dual optical frequency combs by leveraging electro-optic modulators. The repetition rate difference between dual combs, i.e. the A-scan rate of dual-comb OCT, can be adjusted within 0~6 MHz. By down-converting the interference signal from optical domain to radio-frequency domain through dual comb beating, the down-converted bandwidth of the interference signal is less than 22.5 MHz which is at least two orders of magnitude lower than that in conventional OCT systems. A LabVIEW program is developed for video-rate operation, and the centimeter imaging depth is proved by using 10 pieces of 1-mm thick glass stacked as the sample. The effective beating bandwidth between two optical comb sources is 7 nm corresponding to ~108 comb lines, and the axial resolution of the dual-comb OCT is 158 µm. Dual optical frequency combs provide a promising solution to relax the detection bandwidth requirement in fast long-range OCT systems

    Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser

    Get PDF
    Passively mode-locked fiber lasers have been intensively applied in various research fields. However, the passive mode-locking typically operates in free-running regime, which easily produces messy multiple pulses due to the fruitful nonlinear effects involved in optical fibers. Actively controlling those disordered pulses in a passively mode-locked laser is of great interest but rarely studied. In this work, we experimentally investigate a flexible pulse-spacing manipulation in the passively mode-locked multipulse fiber laser by both intracavity and extracavity methods. A tuning range of pulse spacing up to 1.5 ns is achieved. More importantly, continuous pulse-spacing modulation is successfully demonstrated through external optical injection. It is anticipated that the results can contribute to the understanding of laser nonlinear dynamics and pursuing the optimal performance of passively mode-locked fiber lasers for practical applications

    Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators

    Get PDF
    Imaging speed and range are two important parameters for optical coherence tomography (OCT). A conventional video-rate centimeter-range OCT requires an optical source with hundreds of kHz repetition rate and needs the support of broadband detectors and electronics (>1 GHz). In this paper, a type of video-rate centimeter-range OCT system is proposed and demonstrated based on dual optical frequency combs by leveraging electro-optic modulators. The repetition rate difference between dual combs, i.e. the A-scan rate of dual-comb OCT, can be adjusted within 0~6 MHz. By down-converting the interference signal from optical domain to radio-frequency domain through dual comb beating, the down-converted bandwidth of the interference signal is less than 22.5 MHz which is at least two orders of magnitude lower than that in conventional OCT systems. A LabVIEW program is developed for video-rate operation, and the centimeter imaging depth is proved by using 10 pieces of 1-mm thick glass stacked as the sample. The effective beating bandwidth between two optical comb sources is 7 nm corresponding to ~108 comb lines, and the axial resolution of the dual-comb OCT is 158 µm. Dual optical frequency combs provide a promising solution to relax the detection bandwidth requirement in fast long-range OCT systems

    High Concentration of Aspirin Induces Apoptosis in Rat Tendon Stem Cells via Inhibition of the Wnt/β-Catenin Pathway

    Get PDF
    Background/Aims: Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used in clinical practice to relieve fever and pain. Aspirin, as a representative NSAID, has been widely used in the treatment of tendinopathy. Some reports have demonstrated that aspirin can induce apoptosis in cancer cells. However, evidence regarding aspirin treatment for tendinopathy, especially the effect of this treatment on tendon stem cells (TSCs), is lacking. Understanding the effect of aspirin on tendinopathy may provide a basis for the rational use of NSAIDs in clinical practice. The aim of our study was to determine whether aspirin induces apoptosis in rat TSCs via the Wnt/β-catenin pathway. Methods: First, we used flow cytometry and fluorescence to detect TSC apoptosis. Protein expression of the apoptosis-related caspase-3 pathway was investigated via western blot analysis. Next, we used western blotting to determine the effect of aspirin on the Wnt/β-catenin pathway. We used immunostaining to detect the levels of Bcl2, cleaved caspase-3, and P-β-catenin in the Achilles tendon. Finally, we used flow cytometry, fluorescence, and western blotting to investigate the aspirin-induced apoptosis of TSCs via the Wnt/β-catenin pathway. Results: Aspirin induced morphological apoptosis in rat TSCs via the mitochondrial/caspase-3 pathway and induced cellular apoptosis in the Achilles tendon. Apoptosis was partly reversed after adding the Wnt signaling activator Wnt3a and lithium chloride (LiCl, a GSK-3β inhibitor). Aspirin administration led to a dose-dependent increase in COX-2 expression. Apoptosis was promoted after adding the COX-2 inhibitor NS398. Conclusion: The Wnt/β-catenin pathway plays a vital role in aspirin-induced apoptosis by regulating mitochondrial/caspase-3 function. Elevating COX-2 levels may protect cells against apoptosis. More importantly, the results remind us to consider the apoptotic effect of aspirin on TSCs and tendon cells when aspirin is administered to treat tendinopathy. The relationship between the positive and negative effects of aspirin remains a subject for future study

    An Image Stabilization Optical System Using Deformable Freeform Mirrors

    No full text
    An image stabilization optical system using deformable freeform mirrors is proposed that enables the ray sets to couple dynamically in the object and image space. It aims to correct image blurring and degradation when there is relative movement between the imaging optical axis and the object. In this method, Fermat’s principle and matrix methods are used to describe the optical path of the entire optical system with a shift object plane and a fixed corresponding image plane in the carrier coordinate system. A constant optical path length is determined for each ray set, so the correspondence between the object and the shift free image point is used to calculate the solution to the points on the surface profile of the deformable mirrors (DMs). Off-axis three-mirror anastigmats are used to demonstrate the benefits of optical image stabilization with one- and two-deformable mirrors

    Study on the Synergetic Fire-Retardant Effect of Nano-Sb2O3 in PBT Matrix

    No full text
    Nano-Sb2O3 has excellent synergistic flame-retardant effects. It can effectively improve the comprehensive physical and mechanical properties of composites, reduce the use of flame retardants, save resources, and protect the environment. In this work, nanocomposites specimens were prepared by the melt-blending method. The thermal stability, mechanical properties, and flame retardancy of a nano-Sb2O3–brominated epoxy resin (BEO)–poly(butylene terephthalate) (PBT) composite were analyzed, using TGA and differential scanning calorimetry (DSC), coupled with EDX analysis, tensile testing, cone calorimeter tests, as well as scanning electron microscopy (SEM) and flammability tests (limiting oxygen index (LOI), UL94). SEM observations showed that the nano-Sb2O3 particles were homogeneously distributed within the PBT matrix, and the thermal stability of PBT was improved. Moreover, the degree of crystallinity and the tensile strength were improved, as a result of the superior dispersion and interfacial interactions between nano-Sb2O3 and PBT. At the same time, the limiting oxygen index and flame-retardant grade were increased as the nano-Sb2O3 content increased. The results from the cone calorimeter test showed that the peak heat release rate (PHRR), total heat release rate (THR), peak carbon dioxide production (PCO2P), and peak carbon monoxide production (PCOP) of the nanocomposites were obviously reduced, compared to those of the neat PBT matrix. Meanwhile, the SEM–energy dispersive spectrometry (EDX) analysis of the residues indicated that a higher amount of C element was left, thus the charring layer of the nanocomposites was compact. This showed that nano-Sb2O3 could promote the degradation and charring of the PBT matrix, improving thermal stability and flame retardation
    corecore