5,379 research outputs found

    Sterile neutrino Dark Matter production from scalar decay in a thermal bath

    Get PDF
    We calculate the production rate of singlet fermions from the decay of neutral or charged scalar fields in a hot plasma. We find that there are considerable thermal corrections when the temperature of the plasma exceeds the mass of the decaying scalar. We give analytic expressions for the temperature-corrected production rates in the regime where the decay products are relativistic. We also study the regime of non-relativistic decay products numerically. Our results can be used to determine the abundance and momentum distribution of Dark Matter particles produced in scalar decays. The inclusion of thermal corrections helps to improve predictions for the free streaming of the Dark Matter particles, which is crucial to test the compatibility of a given model with cosmic structure formation. With some modifications, our results may be generalised to the production of other Dark Matter candidates in scalar decays.Comment: This version matches the one published in JHEP. 44 pages, 10 figure

    Fast and Accurate Random Walk with Restart on Dynamic Graphs with Guarantees

    Full text link
    Given a time-evolving graph, how can we track similarity between nodes in a fast and accurate way, with theoretical guarantees on the convergence and the error? Random Walk with Restart (RWR) is a popular measure to estimate the similarity between nodes and has been exploited in numerous applications. Many real-world graphs are dynamic with frequent insertion/deletion of edges; thus, tracking RWR scores on dynamic graphs in an efficient way has aroused much interest among data mining researchers. Recently, dynamic RWR models based on the propagation of scores across a given graph have been proposed, and have succeeded in outperforming previous other approaches to compute RWR dynamically. However, those models fail to guarantee exactness and convergence time for updating RWR in a generalized form. In this paper, we propose OSP, a fast and accurate algorithm for computing dynamic RWR with insertion/deletion of nodes/edges in a directed/undirected graph. When the graph is updated, OSP first calculates offset scores around the modified edges, propagates the offset scores across the updated graph, and then merges them with the current RWR scores to get updated RWR scores. We prove the exactness of OSP and introduce OSP-T, a version of OSP which regulates a trade-off between accuracy and computation time by using error tolerance {\epsilon}. Given restart probability c, OSP-T guarantees to return RWR scores with O ({\epsilon} /c ) error in O (log ({\epsilon}/2)/log(1-c)) iterations. Through extensive experiments, we show that OSP tracks RWR exactly up to 4605x faster than existing static RWR method on dynamic graphs, and OSP-T requires up to 15x less time with 730x lower L1 norm error and 3.3x lower rank error than other state-of-the-art dynamic RWR methods.Comment: 10 pages, 8 figure

    Attractor scenarios and superluminal signals in k-essence cosmology

    Full text link
    Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the universe. These scenarios avoid the need for fine-tuned initial conditions (the "coincidence problem") because of the attractor-like dynamics of the k-essence field \phi. It was recently shown that all k-essence scenarios with Lagrangians p=L(X)/\phi^2, necessarily involve an epoch where perturbations of \phi propagate faster than light (the "no-go theorem"). We carry out a comprehensive study of attractor-like cosmological solutions ("trackers") involving a k-essence scalar field \phi and another matter component. The result of this study is a complete classification of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K(\phi)L(X) . Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. An analogous "no-go theorem" still holds for this class of models, indicating the existence of a superluminal epoch. In the context of k-essence cosmology, the superluminal epoch does not lead to causality violations. We discuss the implications of superluminal signal propagation for possible causality violations in Lorentz-invariant field theories.Comment: 27 pages, RevTeX4. Minor cosmetic changes, references adde

    Dark energy and bouncing universe from k-fields

    Get PDF

    One-loop Einstein-Hilbert term in minimally supersymmetric type IIB orientifolds

    Get PDF
    We evaluate string one-loop contributions to the Einstein-Hilbert term in toroidal minimally supersymmetric type IIB orientifolds with D-branes. These have potential applications to the determination of quantum corrections to the moduli Kahler metric in these models

    The Kinematics of Cosmic Reheating

    Full text link
    We calculate the relaxation rate of a scalar field in a plasma of other scalars and fermions with gauge interactions using thermal quantum field theory. It yields the rate of cosmic reheating and thereby determines the temperature of the "hot big bang" in inflationary cosmology. The total rate originates from various processes, including decays and inverse decays as well as Landau damping by scatterings. It involves quantum statistical effects and off-shell transport. Its temperature dependence can be highly nontrivial, making it impossible to express the reheating temperature in terms of the model parameters in a simple way. We pay special attention to the temperature dependence of the phase space due to the modified dispersion relations in the plasma. We find that it can have a drastic effect on the efficiency of perturbative reheating, which depends on the way particles in the primordial plasma interact. For some interactions thermal masses can effectively close the phase space for the dominant dissipative processes and thereby impose an upper bound on the reheating temperature. In other cases they open up new channels of dissipation, hence increase the reheating temperature. At high temperatures we find that the universe can even be heated through couplings to fermions, which are often assumed to be negligible due to Pauli-blocking. These effects may also be relevant for baryogenesis, dark matter production, the fate of moduli and in scenarios of warm inflation.Comment: 39 pages, 17 figures. The present version of the article slightly deviates from the published version. It includes a number of small corrections, which we summarised in a published Corrigendu
    corecore