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1 Introduction

1.1 Motivation

The motion of celestial bodies over a vast range of scales, ranging from sub-galactic to

supercluster scales, deviates from the prediction of general relativity and the observed

distribution of baryonic matter. In addition, it seems impossible to explain the formation

of the observed structures in the universe from the gravitational collapse of the primordial

density perturbations observed in the CMB. All attempts to consistently explain these

phenomena on all scales by a modification of the laws of gravity have failed so far. All known

data are, however, in excellent agreement with the hypothesis that significant amounts of

non-luminous Dark Matter (DM) are present in the observable universe. This hypothesis

is not only consistent with the observed movement of stars, galaxies and clusters as well

as structure formation in the early universe (with the known laws of gravity), it also gives

an explanation for the apparent gravitational lensing of light from distant galaxies and

quasars. If one takes this viewpoint, then these observations can be used to map the

distribution of DM in the universe. The simplicity of this picture, the excellent agreement

with data from very different physical environments and the lack of any known alternative
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explanation make the DM hypothesis very compelling. It is, however, not clear at this

stage what the DM is made of.

The particles that compose the DM must be massive, electrically neutral, long lived and

almost collisionless. The only candidates that fulfil these requirements within the SM are

neutrinos. The known neutrinos, however, have masses below 1 eV and were relativistic

at the time when structures in the early universe formed. The free streaming of such

Hot Dark Matter (HDM) would suppress the formation of small scale structures in the

universe, which is in contradiction with observations, see e.g. [1] for a summary. Hence,

DM must be made of one or more new particles. One obvious candidate would be heavier

neutrino mass eigenstates, which could be consistent with structure formation constraints.

A comprehensive overview of particle physics scenarios that realise this idea and constraints

on them from experiments, astrophysics and cosmology are given in [2]. In the following

we recap only the basic facts that are relevant for the present work.

1.2 Heavy sterile neutrinos

Speculations about the existence of heavy neutrinos N have been motivated for various

other reasons, see [3] for a review. Adding new leptons with gauge charges to the SM

requires to add a whole fourth generation of particles to ensure cancellations of all anoma-

lies. This scenario is strongly constrained by experimental data, hence the heavy neutrinos

should be “sterile”, i.e., singlets under the SM gauge groups. In the strict sense, we use the

term sterile neutrinos for singlet fermions that mix with the known SM neutrinos νL, which

are usually identified with right handed neutrinos νR. However, many authors use the term

in a more loose sense for any fermionic gauge singlet (or heavy neutral lepton), regardless of

whether or not it mixes with νL. Since the scalar decay production mechanism we discuss

here does not rely on a mixing of N with ordinary neutrinos, our results apply in both cases.

Seesaw type heavy neutrinos. The probably strongest motivation for sterile neutrinos

in the strict sense, i.e. right handed neutrinos νR that do mix with νL, are the observed

neutrino oscillations, which have been awarded with the 2015 Nobel Prize in physics. In

the SM neutrinos only exist with left handed (LH) chirality, while all other fermions come

with LH and right handed (RH) chirality. An explicit mass term for LH neutrinos νL is

forbidden by gauge symmetry, and the Higgs mechanism cannot generate a Dirac mass

term ν̄LmDνR for them without existence of a RH counterpart νR. If νR exist, they are

allowed to have an explicit Majorana mass term ν̄RMMν
c
R because they are gauge singlets.

Here νcR = CνR
T . If νR exists, the mixing between the known “active” (SU(2) charged)

neutrinos νLα (with α = e, µ, τ) and the “sterile” singlets νRI (where I = 1 . . . n labels the

families of RH neutrinos) generates a Majorana mass term for the νLα and explains the

neutrino oscillations via the seesaw mechanism [4–9].

The seesaw mechanism predicts the existence of n new neutrino mass states NI that

are almost identical with the singlets νRI , but contain a small admixture θαIν
c
Lα of the

doublet fields. One can describe them by Majorana spinors

NI =
[
V †NνR + θU∗Nν

c
L +

(
V †NνR + θU∗Nν

c
L

)c]
I
. (1.1)
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Here θ = mDM
−1
M , VN is the equivalent of the Pontecorvo-Maki-Nakagawa-Sakata matrix

in the sterile sector and UN is its unitary part. We can in good approximation take

VN = UN = 1.1 The active-sterile mixing θ leads to a θ-suppressed weak interaction

of the NI , and this is the only way how they couple to the SM at low energies. There

have been different suggestions what the role of the NI in cosmology and particle physics

could be. Their CP-violating interactions could, for instance, generate the observed baryon

asymmetry of the universe [11] via leptogenesis during their decay [12] or production [13, 14]

in the early universe. For very low eigenvalues MI of MM , they could be responsible for the

LSND [15], Gallium [16] and reactor [17] neutrino oscillation anomalies and/or act as extra

relativistic degrees of freedom in the early universe (”dark radiation”). Last but not least,

the NI are obvious DM candidates: they inherit all advantages of the known neutrinos, but

their masses are given by the eigenvalues of MM and can be much heavier. Which of these

roles the NI are able to take strongly depends on the magnitude of the MI , see e.g. [3, 18].

For masses below the electroweak scale, various experimental constraints exist [10, 19, 20],

and the NI can be searched for in near future experiments [20–30].

Observational tests. The idea that heavy neutrinos compose the DM can be tested in

various different ways, leading to significant constraints on their properties. Let us in the

following focus on one singlet fermion N with mass mN that should compose the DM. The

most model independent constraint on its properties can be found by applying phase space

considerations [31] to DM dense regions, which imposes a lower bound on mN . The precise

value of this bound depends on the N phase space distribution function fN , which depends

on the way how N were produced in the early universe. It usually lies in the range of a

few keV [32], 1− 2 keV can be used as a conservative estimate.

If N is a sterile neutrino in the strict sense, we can identify N ≡ N1 in (1.1). Then N

at least interacts via its total mixing angle U2 ≡
∑

α |θα1|2. This makes decays N → ννν

into neutrinos possible, and the N -lifetime ∝ U−2m−5
N must be at least comparable to the

age of the universe. Moreover, the radiative decay N → γν [33, 34] predicts an emission

line of energy mN/2 from DM dense regions in space [35]. Non-observation of this emission

imposes an upper bound on U2 for given mN . In 2014, two independent publications

reported the detection of an unidentified emission signal at 3.5 keV that could be interpreted

in this way, though this claim is disputed [36–43]. For relatively small masses, the mixing

U2 can also lead to a signal in an upgraded version of the KATRIN experiment [29, 44]. A

direct detection [45, 46], on the other hand, would be very challenging [47].

The free streaming of N and its effect on structure formation provide another way to

constrain the parameter space. These depend strongly on the N phase space distribution

function fN , which is determined by the way the heavy neutrinos are produced in the

early universe. The precise shape of fN can be found by solving a set of momentum

dependent kinetic equations for the coupled system composed of the scalar, N and the

thermal plasma, see e.g. [48–53]. A detailed discussion can be found in section 5 of [2].

Doing this requires knowledge of the N -production rate. In this work we calculate thermal

1We use the notation of [10], where all relations are defined more precisely.
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corrections to the production rate due to interactions with the primordial plasma or a

pre-existing N -population.

Sterile neutrino distribution function. The framework of nonequilibrium quantum

field theory allows to systematically compute thermal corrections to the production rate

of heavy neutrinos. Some elements of nonequilibrium quantum field theory are briefly

summarised in the appendix A. The field theoretical equivalent to the classical phase space

distribution fNq is given by the function fN (q0) in the Kadanoff-Baym ansatz (A.14) for

the heavy neutrino propagator when evaluated at the quasiparticle pole ΩNq,

fNq = fN (ΩNq). (1.2)

Due to the feeble interaction of the singlets N , we can for all practical purposes approximate

ΩNq ' ωNq = (q2 + m2
N )1/2. Our main results for the rate of N -production, which can

be expressed in terms of one-dimensional integrals, are valid for arbitrary fN . That is

important because fN is a dynamical quantity that changes throughout the production,

and the production rate in each moment in time is affected by fN in that moment.

In addition to the general expressions, we provide illustrative analytic results by em-

ploying a simple parametrisation,2

fN (q0) = αfF (βq0) for q0 > 0. (1.3)

The ansatz (1.3) has a simple physical interpretation. β = 1 corresponds to “kinetic equi-

librium”, i.e., the distribution function has the same shape as a Fermi-Dirac distribution,

but a different normalisation. For β 6= 1 the average momentum is shifted with respect

to the background plasma temperature T : larger β correspond to a smaller effective N -

temperature. This could e.g. be realised if a N -population that was produced at earlier

times has been diluted by entropy injection into the plasma after it decoupled. One can

constrain α and β by the requirement that N with distribution fN at a given temperature

T make up for a fraction r of the observed DM density ΩDM ,

rΩDM =
mN

ρc

s0

s

∫
d3p

(2π)3
fN (ωNp) ' α

β3

8πmN

3H2
0m

2
P

gs0
gs

2
7

8

π2

30
T 3

0 , (1.4)

where s = 2π2gsT
3/45 is the radiation entropy density with the effective number gs of

degrees of freedom, mP is the Planck mass and H the Hubble parameter. All quantities

with a subscript 0 refer to present day values. Plugging in ΩDM = 0.268 [54] for β = r = 1

yields α ' 5 × 10−8GeV/mM , which implies α < 0.1 for any mN that is consistent with

phase space analysis bounds.

1.3 Singlet fermion production

Thermal N production via active-sterile mixing. If N is a sterile neutrino in the

strict sense (1.1), then a minimal amount of N is produced thermally via the mixing θ

2For q0 < 0, fN (q0) is determined by the relation (A.16).
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with active neutrinos [55] (Dodelson-Widrow mechanism [56]). The expected free stream-

ing classifies this contribution as Warm Dark Matter (WDM). The efficiency of the thermal

production can be resonantly enhanced by the Mikheyev-Smirnov-Wolfenstein (MSW) ef-

fect if there are considerable lepton asymmetries µα in the plasma [57]. The MSW resonance

does not only affect the total number of produced N -particles, but also their momentum

distribution fN , which determines their free streaming length and thereby affects the for-

mation of structures. The requirement to produce the right amount of DM from mixing

alone imposes an upper and a lower bound on U2 for given mN . The upper bound, which

requires the N -density to remain far below its equilibrium value, turns out to be weaker

than the bounds from emission line searches and structure formation. The lower bound is

crucial, but due to the MSW effect it depends on the value of the µα during N -production.

The requirement to explain the existence of small scale structures observed in Lyα ab-

sorption in quasar spectra puts an upper bound on the free streaming of DM. This already

appears to exclude the scenario where all DM is composed of thermally produced N for

µα = 0 (i.e. in absence of a MSW resonance) [52, 58]. However, for µα 6= 0 the momentum

distribution tends to be “colder” and can be consistent with structure formation [59–62]

if mN > 3.3 keV [63]. It is difficult to work out all the details of the MSW-enhanced pro-

duction because the N production happens to peak at temperatures at which quarks start

to form hadrons. Moreover, the MSW resonance produces non-thermal spectra, for which

it is difficult to simulate structure formation [61]. In spite of significant progress [64–67]

considerable uncertainties remain. At present it seems likely that thermally produced ster-

ile neutrinos can explain all the observed DM consistent with the formation of small scale

structure only if their production is resonantly enhanced by lepton asymmetries µα. The

allowed range for mN reaches from ∼ 3.3 keV to a few tens of keV, depending on µα. The

mixing must be smaller than U2 < 10−8 − 10−12, depending on mN .3 Note that N with

such small mass and mixing can avoid constraints from the Cosmic Microwave Background

or Big Bang Nucleosynthesis [19]. However, they give no significant contribution to the gen-

eration of active neutrino masses in the seesaw mechanism. Hence, one needs at least two

heavier siblings N2 and N3 to explain the two observed active mass splittings in the seesaw

model. Interestingly, this minimal scenario is able to simultaneously explain neutrino os-

cillations, the observed DM density and the baryon asymmetry of the universe [14, 69, 70].

Alternatively, there can of course be an additional source of active neutrino masses.

Production by gauge interactions. At low energies, N in (1.1) only interacts with

other particles via its mixing U2 with active neutrinos. This need not be true at high

energies in the early universe, as N are charged under some spontaneously broken gauge

group in many extensions of the SM. In left-right symmetric theories, for instance, the νR
(and hence N) are charged under a RH SU(2) gauge group. These interactions bring them

into thermal equilibrium in the early universe, which would lead to a too large DM density.

There are different ways to avoid this problem. The equilibration is avoided if the would-be

freezeout temperature of the RH gauge bosons exceeds the (p)reheating temperature of the

3One may wonder if such N properties can arise in “well-motivated” theories of particle physics. An

overview of possible models is e.g. given in [68].
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universe. This temperature is unknown; it may be constrained by CMB observations [71,

72]. If the N equilibrate, their abundance can be made consistent with observation if the

number g∗ of degrees of freedom in the primordial plasma changes significantly after N -

freezeout (e.g. because of a phase transition). Another (related) possibility is that the N

are diluted by a release of entropy into the primordial plasma after their freezeout [73–76].

N production in scalar decays. N -particles can also be produced non-thermally in

the decay of a heavier particle. This is the scenario under consideration here. The heavy

particle may be the inflaton [77, 78], another scalar singlet [49, 50, 79–82], or a charged

scalar [83]. Note that the minimal coupling to the SM already includes some production

from the decays of scalars, namely pions [84–86] and SM Higgs particles [87, 88], which is,

however, sub-dominant compared to the thermal production from mixing. Higgs decay may

give a significant contribution in models with an additional leptophilic (or, more generally,

DM-philic) Higgs doublet, which can decay into N at much higher rate [89–91]. The N

production may happen while the scalar field is in equilibrium (which is usually the case if

it is charged) or while it “freezes in”, leading to somewhat different phenomenology [53].

Since the decay mechanism does not rely on active-sterile mixing to produce the N , it does

not impose a lower bound on U2 and can avoid any constraints from searches for emission

lines. Moreover, it seems to lead to relatively cold DM spectra that are consistent with

structure formation [52]. In the present article, we compute thermal corrections to the

abundance and momentum distribution of N -particles.

1.4 Goal and outline of this work

In this paper we calculate thermal corrections to the production rate of sterile neutrinos

N in the decay of massive scalar fields φ (gauge singlet) and Φ (charged). For these

considerations, it is irrelevant whether or not N mixes with ordinary neutrinos; our results

apply to any massive gauge singlet fermion that is produced in the decay of scalars. If N is

a sterile neutrino in the sense of (1.1), then there is an additional population of N that is

produced thermally via the Dodelson-Widrow mechanism. However, at the temperatures

where scalar decays usually happen, this thermal production by mixing is negligible4 and

we can set U2 = 0. Then (1.1) simplifies to N ' νR + νcR, and N approximately does not

interact with the SM.

In the literature it is usually assumed that the production rate of N particles with a

given momentum p can be obtained from vacuum decay rate of scalar particles into heavy

neutrinos. The momenta of the heavy neutrinos are uniquely fixed in this 1 → 2 decay.

However, in reality the decay happens in the hot and dense primordial plasma that filled

the early universe, and it is well-known that the damping rate of scalars receives thermal

corrections in this regime [92]. There are several reasons for this. First, quantum statistics

can enhance or suppress the decay rate, depending on whether the final state particles are

bosons or fermions. Second, the dispersion relations of quasiparticles in a dense plasma

usually differ from those of particles in vacuum. This can change the phase space. Third,

4The production due to mixing peaks at rather low temperatures T ∼ 100 MeV.
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at high temperature the decay scalar → N + something is not the only process that can

produce N ; inelastic scatterings and Landau damping can also contribute to the rate.

In this work we calculate thermal corrections to the DM production rate from first

principles of nonequilibrium quantum field theory. This in principle is a very complicated

calculation because the production of N involves the scalar field, which is potentially far

from thermal equilibrium during production (if it happens during freeze-in). To avoid cal-

culations with nonequilibrium propagators of the scalar in the loop, we use a trick and

calculate the thermal damping rate for the scalar-quasiparticles with momentum q due to

the interactions with N . This can be done without specifying the thermodynamic state

of the scalar field. The total number of N -particles and their momentum distribution can

be found by plugging the production rate into a set of Boltzmann equations for N and

the scalars. Here we assume that the N -particles are produced in the decay of the scalar-

particles. If they are produced in the decay of the condensate or “classical field” ϕ = 〈φ〉 (or

〈Φ†Φ〉1/2), the effective masses and couplings are generally ϕ-dependent. Thermal correc-

tions to the dissipation rate in this case have e.g. been studied in [93] and references therein.

Compared to previous calculations, our method allows to include all quantum sta-

tistical factors and a proper treatment of the dispersion relations in the plasma. It also

systematically includes processes other than the decay to leading log accuracy in the gauge

coupling. For instance, if Φ is electrically charged and decays into N and a charged

fermion Ψ as Φ → NΨ, then there are also scattering processes Ψγ → ΦN (s-channel)

and γΦ → NΨ (t-channel) as well as their inverse that change the number of N and Φ

particles, or the final state may radiate off a photon (Φ → NΨγ). Although these are of

higher order in some coupling constant, they can become important at high density because

of the Bose enhancement that photons are subject to. The same happens if Φ is charged

under a non-Abelian group and e.g. has electroweak interactions. This has not been taken

into account in past calculations. In this work we calculate the leading order corrections

to the production rate due to these effects.

The paper is organised as follows. In section 2 we calculate the thermally corrected rate

of N -particle production from neutral scalar decays. In section 3 we calculate the thermally

corrected rate of N -particle production from U(1)-charged scalar decays. The equivalent

rate for SU(N) charged scalars can be obtained from that by a few simple replacements.

We also compute the leading log contribution to the N -production from scatterings in

the plasma. The rates can in general only be determined numerically. We give analytic

approximations that hold for the regime where the decay products are relativistic. In

section 4 we discuss our results and conclude. In the appendix A we briefly recall the

methods from nonequilibrium quantum field theory required for this calculation, for more

details see [94] (in general) and [95, 96] (specifically for the approach used here).
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2 Scalar singlet decay

We first treat the case of production from the decay of a real singlet scalar field φ. That

is, we consider the Lagrangian

L = LSM +
i

2
N /∂N − `LFNh̃− h̃†NF †`L −

1

2
NmNN

+
1

2
∂µφ∂

µφ− V (φ)− 1

2
yφNN + Lφint. (2.1)

Here h is the Higgs doublet and h̃ = εh∗ with ε being the SU(2) antisymmetric tensor. `L
is the SM lepton doublet, F is a matrix of Yukawa couplings, the potential V (φ) includes a

mass term m2
φφ

2/2 and y is the Yukawa coupling that mediates the φ decay into N . Recall

that N = N c is a Majorana spinor. Since we are not interested in production via active

sterile mixing, we immediately set F = 0. Lφint contains interactions of φ with other fields

than N . Such interactions must exist in order to produce φ in the early universe. Lφint may

e.g. include a Higgs portal term λ̃φ2h†h, Yukawa interactions or other scalar interactions.

2.1 Heavy neutrino production rate

In nonequilibrium and thermal field theory, gain- and loss rates for the occupation num-

bers of weakly coupled fields are related to the discontinuities of self-energies evaluated at

the quasiparticle pole [92], see appendix A. Using the finite temperature optical theorem

and cutting rules [97], one can interpret these rates in terms of decays and scatterings

involving the external particles as well as the “cut” propagators in the loop [98, 99]. In

principle, the most straightforward way to calculate the number and momentum distribu-

tion of N -particles of a given momentum p that are produced in a given time interval is to

compute the N -self energies Σ≷
N in the closed time path formalism and obtain rates of the

form (A.37). This, however, requires evaluating Feynman diagrams with nonequilibrium

propagators for both, the decaying scalar φ and N , in the loop. The interactions of the

singlet fields N are typically feeble, which justifies to use the Kadanoff-Baym ansatz (A.14)

and apply the narrow width approximation (ΓNq = 0) for propagators inside the loops. For

the scalar field it is not obvious that these approximations are always justified because it

usually has other interactions in addition to the coupling to N . In the present work we are

interested in scenarios where N -production is dominated by decays. In this regime we can

use a trick to avoid the scalar propagator in the loops: instead of directly calculating the

production rate of N , we compute the damping rate of φ due to interactions with N and

use it to calculate the number of produced N -particles via (2.10).

Kinetic equations for the occupation numbers. The occupation numbers for φ-

modes can be characterised by a function fφq(t), which follows the effective kinetic equa-

tion (A.40),

∂tfφq = [1 + fφq] Γ<φq − fφqΓ>φq

= −Γφq
[
fφq − f̄φq

]
(2.2)
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with

f̄φq ≡ (Γ>φq/Γ
<
φq − 1)−1. (2.3)

Here Γ≷
φq are gain- and loss rates and Γφq = Γ>φq − Γ<φq can be identified with the total

thermal damping rate. The precise definitions of these rates are given in the appendix

by (A.29), (A.30) and (A.28). In the following we will use the symbol Γ̃φq for the contri-

bution to the thermal φ-width Γφq that comes from diagrams with N -propagators in the

loop. We can formally define Γ̃φq by the equation

Γφq ≡ Γ̃φq + Γ
(0)
φq , (2.4)

where Γφq is the total thermal φ-width and Γ
(0)
φq ≡ Γφq|y=0 is Γφq at zeroth order in y.

Γ
(0)
φq is generated from the interactions in V (φ) and Lφint. Analogously, one can define self

energies Π̃≷
φ and rates Γ̃≷

φq from (A.29) and (A.30). For convenience, we can rewrite (2.2) as

∂tfφq = −[Γ̃φq + Γ
(0)
φq ]
[
fφq − f̄φq

]
. (2.5)

Note that f̄φq implicitly depends on y and fN because it has to be evaluated with the full

Γ≷
φq. If the interactions in Lφint are numerous or much stronger than the Yukawa coupling

(e.g. λ̃� y), then one may expand in Γ̃φq/Γ
(0)
φq � 1 to obtain

∂tfφq ' −[Γ̃φq + Γ
(0)
φq ]
[
fφq − f̄

(0)
φq

]
, (2.6)

where f
(0)
φq ≡ fφq|y=0 is independent of y and fN . The total number of N -particles

nN ≡
∫

d3p

(2π)3
fNp (2.7)

is given by the rate equation

∂tnN = 2

∫
d3q

(2π)3
Γ̃φq

[
fφq − f̄φq

]
. (2.8)

The factor 2 in front of the integral is due to the fact that two N -particles are produced in

each φ-decay. If the main contribution to Γ̃φq comes from 1→ 2 decays and their inverse,

one can express

Γ̃φq =

∫
d3p

(2π)3
γ̃φ(p,q)δ(Ωφq −ΩNp −ΩNp−q). (2.9)

and

∂tfNp =

∫
d3q

(2π)3
[γ̃φ(p,q) + γ̃φ(q− p,q)]

[
fφq − f̄φq

]
δ(Ωφq −ΩNp −ΩNp−q)

= 2

∫
d3q

(2π)3
γ̃φ(p,q)

[
fφq − f̄φq

]
δ(Ωφq −ΩNp −ΩNp−q). (2.10)

Here Ωφq is the mass shell of a φ-quasiparticle with spatial momentum q, see (A.21), and

ΩNp the energy for a N -quasiparticle with spatial momentum p. In the second equality
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we used γ̃φ(p,q) = γ̃φ(q − p,q) for Ωφq = ΩNp + ΩNp−q. We should recall that the

quantities Ωφq, fφq, f̄φq, γ̃φ(p,q) and fNp all depend on time. In the following, we focus

on the computation of the quantities Γ̃>φq and Γ̃<φq and γ̃φq, i.e., the gain- and loss rates

for N -production. From (2.5)–(2.10) it is clear that the full Γ≷
φ is needed to determine the

time evolution of fφq and calculate fNp in general.

In the special case that φ predominantly couples to fields that are in equilibrium, Γ≷
φq

fulfil a relation of the type (A.35) and one can further approximate

∂tfNp = 2

∫
d3q

(2π)3
γ̃φ(p,q) [fφq − fB(Ωφq)] δ(Ωφq −ΩNp −ΩNp−q), (2.11)

where fB(Ω) = (eΩ/T − 1)−1 is the Bose-Einstein distribution and we have suppressed the

time dependence of all quantities. No knowledge of the full Γφq is needed to compute

fB(Ωφq). However, Ωφq depends on time, and the parameters in Lφint still affect fNp

because the time evolution of fφq is governed by (2.5).

The damping rate. As summarised in the appendix, Γφq can be determined from (A.26)

by calculating the imaginary part of the retarded self-energy for φ at the quasiparticle pole,

Γφq ' −
ImΠR

φ (q)

q0

∣∣∣
q0=Ωφq

. (2.12)

Γ̃φq is obtained from the y-dependent part of the self-energy ImΠ̃R
φ . The rates Γ̃≷

φq are

obtained equivalently from Π̃≷
φ . At one-loop level, the self energies Π̃≷

φ can be calculated

from the diagram

by applying finite temperature Feynman rules [100]. Here the solid lines represent the

external φ and the dotted lines N -propagators. Using the expressions given in appendix A,

the self-energies read

Π̃<
φ (q) =

iy2

2

∫
d4p

(2π)4
tr
[
S<N (p)S>N (p− q)

]
= − iy

2

2

∫
d4p

(2π)4
(1− fN (p0 − q0)) fN (p0)tr [ρN (p)ρN (p− q)] (2.13)

and

Π̃>
φ (q) =

iy2

2

∫
d4p

(2π)4
tr
[
S>N (p)S<N (p− q)

]
= − iy

2

2

∫
d4p

(2π)4
(1− fN (p0)) fN (p0 − q0)tr [ρN (p)ρN (p− q)] . (2.14)
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In combination, this gives

Π̃−φ (q) =
iy2

2

∫
d4p

(2π)4
(fN (p0)− fN (p0 − q0)) tr [ρN (p)ρN (p− q)] . (2.15)

If N had gauge interactions while being produced in the primordial plasma, then this would

not only add another efficient N -production mechanism (thermal production via gauge

interactions), but would also modify the production from scalar decays [92, 101]. In this

case the results from example IV in section 7 of [102] may be applied. We will not repeat

this calculation here. Instead we assume that N is indeed a singlet not only under the SM

gauge groups, but with respect to all interactions that are relevant in the early universe.

2.2 Small Yukawa couplings y: production in decays

It is often assumed that the coupling y is very small, y < 10−5− 10−9 [53]. Then the term

yφNN can be used to generate a keV scale Majorana mass term from a GeV-TeV vev of

φ, without having to add a small Majorana mass NmNN/2 in (2.1) by hand. In this case

the effects of forward scatterings (which modify the N dispersion relation in the plasma)

and inelastic scatterings (which increase the thermal width of N and thereby reduce its

effective lifetime) are negligible even if there is already some N -population in the plasma.

Then we can approximate ρN (p) with the free spectral density,

ρN (p) ' 2πsign(p0)(/p+mN )δ(p2 −m2
N ). (2.16)

This essentially means that we use free thermal propagators for N (instead of resummed

propagators), which greatly simplifies the evaluation of the integrals in (2.13)-(2.15). It

also implies that the energy for N -quasiparticles in the plasma is in good approximation

ΩNp ' ωNp = (p2 +m2
N )1/2. (2.17)

Corrections are suppressed by both, the smallness of y � 1 and fN � 1 due to (1.4).

Calculation of the self-energies. We first focus on the case q = 0. The results are

Π̃>
φ (q)

∣∣
q=0

=
−iy2

8π
q2

0

[
1−

(
2mN

q0

)2
]3/2

[1− fN (q0/2)]2 θ(q0 − 2mN ), (2.18)

Π̃<
φ (q)

∣∣
q=0

=
−iy2

8π
q2

0

[
1−

(
2mN

q0

)2
]3/2

[fN (q0/2)]2 θ(q0 − 2mN ), (2.19)

hence

Π̃−φ (q)
∣∣
q=0

=
−iy2

8π
q2

0

[
1−

(
2mN

q0

)2
]3/2

[1− 2fN (q0/2)] θ(q0 − 2mN ). (2.20)

Let us now turn to the case q 6= 0. In a thermal bath, Γφq in general cannot be obtained

by multiplying Γ̃φq=0 with the time dilatation factor mφ/(m
2
φ+q2)1/2. This can be under-

stood by recalling that 1/Γφq is the lifetime of a quasiparticle and determines its mean free
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path in the bath. The difference in the lifetime of a q = 0 and q 6= 0 quasiparticle in a bath

is not only due to time dilatation, but also due to the fact that the cross section for scatter-

ings with bath particles (which reduces the lifetime) generally depends on the energy of the

colliding particles. Moreover, the quantum statistical factor (1−2fN ) breaks Lorentz invari-

ance: a moving φ-particle decays into N with different momenta than one at rest, and the

occupation numbers in those modes generally differ. In the approximation (2.16) for very

small y, the effect of scatterings is negligible, but quantum statistics may still play a role.

To evaluate the integrals in (2.13)-(2.15) at q 6= 0, we neglect the mass mN for simplicity,

which seems justified for mN ∼ keV. Using δ(p2
0) in ρN (p), it is straightforward to obtain

Π̃>
φ (q) =

−iy2

2π

∫ ∞
0

dp

∫ 1

−1
p dx [1− fN(p)] fN(p− q0)

×sign(p− q0) (pqx− pq0) δ[q2
0 − q2 + 2p(qx− q0)]−

[
q0 → −q0

]
, (2.21)

Π̃<
φ (q) =

−iy2

2π

∫ ∞
0

dp

∫ 1

−1
p dx fN(p) [1− fN(p− q0)]

×sign(p− q0) (pqx− pq0) δ[q2
0 − q2 + 2p(qx− q0)]−

[
q0 → −q0

]
, (2.22)

Π̃−φ (q) =
iy2

2π

∫ ∞
0

dp

∫ 1

−1
p dx [fN(p)− fN(p− q0)]

×sign(p− q0) (pqx− pq0) δ[q2
0 − q2 + 2p(qx− q0)]−

[
q0 → −q0

]
, (2.23)

where p = |p|, q = |q| and x = pq/pq is the cosine of the angle between the spatial vectors

p and q. The remaining δ-function can be used to evaluate the x-integral, which fixes the

limits for the p-integration:

Π̃>
φ (q) =

−iy2

8πq

∫ (q0+q)/2

(q0−q)/2
dp [1− fN (p)] [1− fN (q0 − p)] (q2

0 − q2), (2.24)

Π̃<
φ (q) =

−iy2

8πq

∫ (q0+q)/2

(q0−q)/2
dp fN (p)fN (q0 − p) (q2

0 − q2), (2.25)

Π̃−φ (q) =
−iy2

8πq

∫ (q0+q)/2

(q0−q)/2
dp (1− fN (p)− fN (q0 − p)) (q2

0 − q2). (2.26)

It is worth to note that no assumptions about fN were required to obtain these expressions.

If fN can be approximated by (1.3), the final integrals can be solved analytically, e.g.

Π̃−φ (q) =
−iy2

8π
(q2

0 − q2)

[
1− 2α

(
1− T

βq
log

[
fF (β(q0 − q)/2)

fF (β(q0 + q)/2)

])]
. (2.27)

If there is no pre-existing N -population present at the onset of the φ-decay, then we can

set fN = 0 and all temperature dependent effects in (2.27) seem to disappear. This is what

one would intuitively expect, and this is why the vacuum decay rate has been used in the

past literature.

Production rate. From (A.28) it is clear that Π̃−φ should be evaluated at the φ-

quasiparticle pole Ωφq. The φ-quasiparticle dispersion relation generally differs from

ωφq = (m2
φ + q2)1/2, (2.28)
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that is, Ωφq 6= ωφq. This is true even if φ is a singlet because φ can have Yukawa couplings

or couplings to other scalars, and V (φ) in general contains self-interactions. In order to be

produced in the early universe, φ necessarily must have some interactions, and these will

necessarily shift the quasiparticle mass pole. If, for example

V (φ) =
1

2
m2
φφ

2 +
λ

4!
φ4, (2.29)

then

Ω2
φq ' q2 +M2

φ, (2.30)

with the thermal mass

M2
φ = m2

φ +
λ

24
T 2. (2.31)

Hence, even for fN = 0 there is a thermal correction to Γ̃φq. To estimate this effect, we

compare (2.20) to the vacuum decay rate (mφ � mN )

Γ̃0 =
y2

16π
mφ (2.32)

and express5

Γ̃>φq|q=0 = Γ̃0
Mφ

mφ

[
1−

(
2mN

Mφ

)2
]1/2

[1− fN (Mφ/2)]2 , (2.33)

Γ̃<φq|q=0 = Γ̃0
Mφ

mφ

[
1−

(
2mN

Mφ

)2
]1/2

fN (Mφ/2)2, (2.34)

Γ̃φq|q=0 = Γ̃0
Mφ

mφ

[
1−

(
2mN

Mφ

)2
]1/2

[1− 2fN (Mφ/2)] . (2.35)

This can be compared to the production rate of a Dirac fermion at temperatures below its

mass in section 7.1 of [102]. The only difference is an overall factor 2 for the Dirac fermion.

This difference arises from the fact that, for a Dirac fermion, there are two diagrams of

the type considered here, with a fermion flow in the loop going in opposite directions.

More physically, a Dirac fermion has twice more internal degrees of freedom into which

φ can decay. If one would calculate corrections to (2.20) by using dressed spectral

densities instead of (2.16), then one would generally see further differences between the

production of Dirac and Majorana fermions because the interactions of Majorana fermions

are generally different. However, for small y such corrections are negligible, and the free

spectral density for Dirac and Majorana fermions is the same, hence the factor 2 is the

only difference. It is worth to emphasise that the expression (2.35) holds for any sterile

neutrino distribution function fN , i.e., it does not rely on the ansatz (1.3).

Based on (2.24)-(2.26), one can calculate rates for arbitrary q 6= 0 as

Γ̃>φq =
y2

16π

Ω2
φq − q2

Ωφqq

∫ (Ωφq+q)/2

(Ωφq−q)/2
dp [1− fN (p)] [1− fN (Ωφq − p)] , (2.36)

5Note that (2.33) and (2.34) fulfil a modified detailed balance relation even though N and φ are not in

equilibrium.
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Γ̃<φq =
y2

16π

Ω2
φq − q2

Ωφqq

∫ (Ωφq+q)/2

(Ωφq−q)/2
dp fN (p)fN (Ωφq − p), (2.37)

Γ̃φq =
y2

16π

Ω2
φq − q2

Ωφqq

∫ (Ωφq+q)/2

(Ωφq−q)/2
dp [1− fN (p)− fN (Ωφq − p)] . (2.38)

Here we have neglected the temperature dependence of Z.6 With the approximation (2.30),

one finds

Γ̃>φq =
y2

16π

Mφ

Ωφq

Mφ

q

∫ (Ωφq+q)/2

(Ωφq−q)/2
dp [1− fN (p)] [1− fN (Ωφq − p)] (2.39)

and

Γ̃<φq =
y2

16π

Mφ

Ωφq

Mφ

q

∫ (Ωφq+q)/2

(Ωφq−q)/2
dp fN (p)fN (Ωφq − p). (2.40)

One can combine them to express Γ̃φq in terms of the vacuum decay rate for particles at

rest Γ̃0,

Γ̃φq = Γ̃0
Mφ

mφ

Mφ

Ωφq

1

q

∫ (Ωφq+q)/2

(Ωφq−q)/2
dp [1− fN (p)− fN (Ωφq − p)] (2.41)

The physical interpretation of the different factors in this expression is very simple. Γ̃0 is

simply the decay rate for φ-particles at rest in vacuum. The factor Mφ/mφ takes account of

the fact that the effective mass of φ-quasiparticles in the plasma is larger than in vacuum,

leading to a reduced lifetime. The factor Mφ/Ωφq takes account of the fact that the lifetime

of a particle that moves with momentum q is larger than that of a particle at rest due to

time dilatation. In vacuum, the dilatation factor would be given by mφ/ωφq; this cannot

be applied in the thermal plasma (cf. figure 5), but the obvious generalisation Mφ/Ωφq

works. What is left is a quantum statistical factor that breaks Lorentz invariance (because

the thermal bath singles out a reference frame with respect to which q is measured). For

q = 0 it reduces to the usual expression 1 − 2fN (Mφ/2). From (2.9) we find

γ̃φ(p,q) =
−y2π

2ΩφqωNpωNp−q
(ΩφqωNp − 2m2

N − pq)[1− fN (ωNp)− fN (ωNp−q)]

' y2π

2Ωφq|p− q|
(Ωφq − qx)[1− fN(p)− fN(|p− q|)]. (2.42)

Inserting (2.42) into (2.10), we obtain

∂tfNp = 2
Γ̃0

mφ

M2
φ

p2

∫ ∞
|M2

φ/(4p)−p|
dq

q

Ωφq
[1− fN (p)− fN (Ωφq − p)]

[
fφq − f̄φq

]
= 2

Γ̃0

mφ

M2
φ

p2

∫ ∞
M2
φ/(4p)+p

dΩφq [1− fN (p)− fN (Ωφq − p)]
[
fφq − f̄φq

]
. (2.43)

These expressions are our main results for the case of singlet decay. In the derivation

of above results, we only made use of the relation (A.16), which holds for any Majorana

6This is justified because the leading order thermal correction to ReΠ̃R
φ (p) in (A.24) is usually momentum

independent, cf. (2.31), hence the deviation of Z from unity is of higher order.
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Figure 1. The ratio Γ̃φq/Γ̃0 for q = 0, with Mφ given by (2.31) and λ = 1, β = 1, as a function of

T . The blue curve is for α = 0, the red curve for α = 1. The enhancement of the rate due to the

increasing thermal φ-mass kicks in when Mφ/mφ � 1 above T ' mφ

√
24/λ ' 5mφ. For α = 1, it

competes with a Pauli suppression, which reduces the rate for T > mφ.

fermion. Therefore they hold for any phase space distribution function of N -particles. In

particular, the results do not rely on the validity of the ansatz (1.3).

If the ansatz (1.3) provides a valid approximation to the phase space distribution of

N -particles, then the final integral can be solved analytically,

Γ̃φq =
y2

16π

M2
φ

Ωφq

[
1− 2α

(
1− T

βq
log

[
fF (β(Ωφq − q)/2)

fF (β(Ωφq + q)/2)

])]
= Γ̃0

Mφ

mφ

Mφ

Ωφq

[
1− 2α

(
1− T

βq
log

[
fF (β(Ωφq − q)/2)

fF (β(Ωφq + q)/2)

])]
. (2.44)

For α = β = 1, this can be compared to the results found in [96, 102–104]. Our result

shows that, as long as the N -occupation numbers are far below their equilibrium value

(α� 1), thermal effects actually enhance the production rate at high temperature because

Mφ � mφ for T � mφ/
√
λ. Once some amount of DM has been produced, α = 0 does

not exactly hold. One may wonder if the statistical factors fN can have an effect towards

the end of the DM production. Moreover, it is interesting to see what effect a pre-existing

N -abundance may have. The considerations following (1.4) show that the effect of fN is

always negligible for a standard thermal history and if the average N -momentum is similar

to T (β ' 1). For β � 1, there is room for a sizable α, and Pauli blocking may be significant

for some modes. This either requires a production mechanism that lead to a rather “cold”

pre-existing N -population or a significant injection of entropy into the primordial plasma

after N -decoupling. Some results are plotted in figures 1–5.

In addition to (2.15) there are other contributions to Γ̃φq at order y2, but these always

contain additional powers of the coupling constants in V (φ) and Lφint as well as loop

factors. For instance, the potential (2.29) gives rise to diagrams of the form
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Figure 2. The ratio Γ̃φq/Γ̃0 for q = 0, with Mφ given by (2.31) and λ = 0.1 and β = 1, as a

function of T . The blue curve is for α = 0, the red curve for α = 1. Comparison to figure 1 shows

the effect of changing λ.
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Figure 3. The rate Γ̃φq in units of the time-dilated rate Γ̃0mφ/ωφq for q = mφ, with Mφ given

by (2.31) and λ = 1, as a function of T . The blue curve is for α = 0, the red curve for α = 1. The

enhancement of the rate due to the increasing thermal φ-mass kicks in when Mφ/mφ � 1 above

T ' mφ

√
24/λ ' 5mφ. For α = 1, it competes with a Pauli suppression, which reduces the rate

for T > mφ.
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Figure 4. The rate Γ̃φq in units of the time-dilated rate Γ̃0mφ/ωφq for q = mφ, Mφ given by (2.31)

and λ = 0.1 as a function of T . The blue curve is for α = 0, the red curve for α = 1. Comparison

with figure 3 shows the effect of changing λ.

,

cuts through which e.g. include processes φφ→ φNN . The size of these can be estimated by

considering the equilibrium situation, in which case they are y2-suppressed corrections to a

“setting sun” contribution ∼ 10−3λ2T 2/Ωq calculated in appendix B of [93]. Using (2.44)

and (2.31), one can estimate that they are always suppressed by a factor � λ relative

to (2.44) unless there is a very dense pre-existing population of N .

2.3 Sizable Yukawa coupling y and scatterings

The use of the free spectral density (2.16) is based on the assumption that the N -particles

essentially do not feel the primordial plasma any more after they were produced. Since

the yφN̄N -vertex necessarily involves another N , this assumption is not only justified by

the small Yukawa coupling (y � 1), but also by the low density of N -particles (fN � 1).

The use of (2.16) is only questionable if both of these suppressions are avoided, i.e., if y is

relatively large and there is a pre-existing N -population. We do not treat this special case

here, but it is clear that one expects more significant thermal corrections to Γ̃φq. We expect

these to be very similar to the thermal corrections found in section 7 of [102]. In that work,

the produced fermion is a Dirac particle with gauge interactions. However, the thermal

corrections to the spectral density of a Majorana fermion from Yukawa interactions [105]

have the same structure as the gauge corrections for a Dirac fermion [106]. Finally, we

would like to recall that (2.10) should only be used to determine fNp if N -particles are
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Figure 5. The rate Γ̃φq in units of the time-dilated rate Γ̃0mφ/ωφq with Mφ given by (2.31) and

λ = 1 as a function of q. The blue curve is for α = 0, the red curve for α = 1. In the upper plot T =

mφ, in the lower plot T = 100mφ. At high temperatures, the increased thermal mass Mφ leads to a

larger rate than the vacuum estimate Γ̃0mφ/ωφq suggests. The Pauli blocking for α 6= 0 is inefficient

for momenta q� T because the produced particles’ momenta are outside the Fermi sphere.

predominantly produced in 1 → 2 decays and do not re-scatter within a Hubble time.

For sizable couplings y this may not be the case. If scatterings are important, the mo-

mentum dependent N -production rate should directly be computed from an appropriate

nonequilibrium generalisation of (A.37).
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3 Charged scalar decay

Let us now consider the decay of a charged scalar Φ. To be specific, we use a model

described by the Lagrangian7

L = LSM +
1

2
N(i/∂ −mM )N − `LFNh̃− h̃†NF †`L + iΨ̄/∂Ψ− αΨ̄γµAµΨ− 1

4
FµνF

µν

+(∂µ − iαAµ)Φ†(∂µ + iαAµ)Φ− V (Φ†Φ)− ỹ
(

ΦN̄Ψ + Ψ̄NΦ†
)

+ LΦint. (3.1)

Dark Matter is produced by the Yukawa interaction

ỹΦΨ̄N + h.c. (3.2)

The case where Φ is part of an additional Higgs doublet hν and carries SU(2) charge [91]

can be treated in the same way. In this case Ψ should be identified with the lepton

doublet `L, and there are several massive scalars that decay. The decay of each of them

can be treated equivalently to the present calculation. The only differences are that `L is

a chiral field (leading to a factor 1/2 in the production rate) and the fact that the leptons

in the final state carry SU(2) charge. The way how SU(2) interactions modify the spectral

density ρ(p) is the same as for U(1), except for a numerical factor in the thermal fermion

mass Mf defined below [106, 107].

3.1 Heavy neutrino production

The kinetic equations for the occupation numbers during charged scalar decays can be

obtained from (2.2)–(2.11) by the replacements φ → Φ, y → ỹ and ΩNp−q → ΩΨp−q,

where ΩΨp−q is the energy of a Ψ-quasiparticle with spatial momentum p−q. The overall

factor 2 in front of the integral in the kinetic equations (2.8), (2.10) and (2.11) should be

dropped because only one N -particle is produced in decays Φ→ NΨ. This yields

∂tnN =

∫
d3q

(2π)3
Γ̃Φq

[
fΦq − f̄Φq

]
, (3.3)

∂tfNp =

∫
d3q

(2π)3
γ̃Φ(p,q)

[
fΦq − f̄Φq

]
δ(ΩΦq −ΩNp −ΩΨp−q), (3.4)

where γ̃Φ(p,q) is given from

Γ̃Φq =

∫
d3p

(2π)3
γ̃Φ(p,q)δ(ΩΦq −ΩNp −ΩΨp−q). (3.5)

The rates Γ̃Φq and Γ̃≷
Φq for Φ are defined analogously to the singlet case. As in the case

of the singlet scalar we will approximate ΩNp ' ωNp = (p2 + m2
N )1/2 assuming that the

coupling of N to the plasma is very feeble.

The fact that there is a charged particle in the final state makes the decay Φ → NΨ dif-

ferent from φ→ NN considered in the previous section. First, the Ψ-quasiparticles in the

7If Aµ is identified with the SM-gauge field, the 1
4
FµνF

µν-term should of course be absorbed into LSM .
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final state tend to be thermally populated in the early universe (with a Fermi-Dirac distri-

bution fF for the occupation numbers) due to their gauge interactions, and one expects sig-

nificant Pauli blocking even if the N population is low (fN � 1). Second, a charged particle

feels the presence of the primordial plasma. This leads to “screening”, and the properties

of Ψ-quasiparticles in the plasma are not the same as those of particles in vacuum. Finally,

the gauge interactions of Ψ open up new production channels for N . For example, there

are s-channel and t-channel scatterings γΦ → NΨ with intermediate Φ or Ψ and “pho-

tons” in the initial state as well as their inverse processes. When N -particles are produced

in decays Φ→ NΨ, their momentum distribution can still be calculated using Boltzmann

equation (3.4). If scatterings play a significant role, (3.4) cannot be used, and it is more con-

venient to directly calculate the N -self-energies Σ≷
N (p) to obtain fNp. However, our present

approach can still be used to calculate the total DM density from a rate equation (3.3).

The thermal corrections can be incorporated systematically by calculating Π̃−Φ(q) to

a given order in perturbation theory. In the following we calculate Π̃−Φ(q) only to leading

order in the small coupling ỹ, but we use resummed hard thermal loop (HTL) spectral

densities for Ψ. This is necessary because the “naive” loop expansion is not a consistent

expansion in α at high temperatures [108, 109]. While the use of resummed propagators for

the interacting Ψ is mandatory, we can (assuming that fN and ỹ are not too large) continue

to use the free spectral density for the singlet ρN (p) given by (2.16). The results obtained

in this way are accurate to leading order in ỹ and leading log in the gauge coupling α.

Ψ spectral density. In the hard thermal loop (HTL) approximation the fermion spectral

density reads [106, 107]

ρΨ(p) =
1

2
((γ0 − p̂γγγ)ρ+ + (γ0 + p̂γγγ)ρ−) . (3.6)

Here p̂γγγ = piγi/|p|. The two functions

ρ±(p) ' 2π[ρpole
± (p) + ρcont

± (p)] (3.7)

are the sum of singular contributions ρpole
± and a continuous part ρcont

± . The poles given

by the singular parts define the energies (or dispersion relations) Ω± of quasiparticles with

momentum p,

ρ
pole
± (p) = Z±δ(p0 −Ω±) + Z∓δ(p0 +Ω∓). (3.8)

The continuous part is given by

ρcont
± (p) = θ(1− x2)

y2

|p|
(1∓ x)

×

[(
1∓ x± y2

(
(1∓ x) ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣± 2

))2

+ π2y4(1∓ x)2

]−1

. (3.9)

Here x = p0/|p| and y = 1
2Mf/|p|. The thermal fermion mass reads [106]

Mf = α
C

2
T. (3.10)
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Here C is the quadratic Casimir of the representation of the gauge group. For an U(1) in-

teraction as considered here C = 1. If Ψ carries some kind of hypercharge Y 6= 1, one has to

replace α→ Y α. For SU(N) interactions the shape of ρΨ is be exactly the same as for U(1),

except for the numerical factor C in the definition of Mf that depends on the representation

under which Ψ transforms. The mass Mf is sometimes referred to as the asymptotic mass,

it differs from the plasma frequency ωf at |p| = 0 by a factor
√

2. The residues Z± are

Z± =
Ω2
± − p2

M2
f

. (3.11)

The dispersion relations Ω+ and −Ω− have to be found as the solutions to

0 = p0 − |p|
[
1 + y2

(
(1− x) ln

x+ 1

x− 1
+ 2

)]
. (3.12)

There are two solutions, corresponding to two types of quasiparticles, with dispersion

relations Ω+ and Ω−. The former can be interpreted as a screened one-particle state, the

latter are collective excitations [110]. They are often referred to as “holes” or “plasminos”.

There is an analytic expression for the dispersion relations Ω± in terms of the Lambert

W -function [105]

Ω+ = |p|W−1(s)− 1

W−1(s) + 1
, Ω− = −|p|W0(s)− 1

W0(s) + 1
(3.13)

with s = −e−(y−2+1).

Self-energies. The rate Γ̃Φq at leading order in ỹ is given by the diagram

,

where the solid lines represent the external Φ, the dotted line is a free N -propagator and

the dashed line a resummed Ψ-propagator. The arrow indicates charge flow. The gain and

loss terms read

Π̃<
Φ(q) = iỹ2

∫
d4p

(2π)4
tr
[
S<N (p)S>Ψ(p− q)

]
= −iỹ2

∫
d4p

(2π)4
(1− fF (p0 − q0)) fN (p0)tr [ρN (p)ρΨ(p− q)] (3.14)

and

Π̃>
Φ(q) = iỹ2

∫
d4p

(2π)4
tr
[
S>N (p)S<Ψ(p− q)

]
= −iỹ2

∫
d4p

(2π)4
(1− fN (p0)) fF (p0 − q0)tr [ρN (p)ρΨ(p− q)] . (3.15)
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They combine into

Π̃−Φ(q) = iỹ2

∫
d4p

(2π)4
(fN (p0)− fF (p0 − q0)) tr [ρN (p)ρΨ(p− q)] . (3.16)

The evaluation of (3.14)-(3.16) is complicated by the fact that the angle between the spatial

vectors p and q appears in the complicated function ρΨ(p − q). This can be avoided by

making a shift in the spatial part p of the integration variable p by q and introducing

k = p − q. Afterwards we perform the integration over the angular variable x = qk/(qk)

between q and k with the help of δ(p2 −m2
N ) in (2.16). The requirement that the zero of

the δ-function must be in the interval x ∈ [−1, 1] fixes the limits of the p0 integral to

ω± =
√

(q± k)2 +m2
N , (3.17)

where we have again used the notation q = |q| and k = |k|. The other angular integration

is trivial because of rotational invariance. Then it is straightforward to obtain

Π̃>
Φ(q) =

−iỹ2

2(2π)2q

∫ ∞
0

dk

∫ ω+

ω−

dp0

[[
fF (p0 − q0) [1− fN (p0)]

×
[ (

q2 +m2
N − (p0 − k)2

)
ρ+(p0 − q0, k)

+
(
−q2 −m2

N + (p0 + k)2
)
ρ−(p0 − q0, k)

]]
−
[
p0 → −p0

]]
, (3.18)

Π̃<
Φ(q) =

−iỹ2

2(2π)2q

∫ ∞
0

dk

∫ ω+

ω−

dp0

[[
fN (p0) [1− fF (p0 − q0)]

×
[ (

q2 +m2
N − (p0 − k)2

)
ρ+(p0 − q0, k)

+
(
−q2 −m2

N + (p0 + k)2
)
ρ−(p0 − q0, k)

]]
−
[
p0 → −p0

]]
(3.19)

and therefore

Π̃−Φ(q) =
iỹ2

2(2π)2q

∫ ∞
0

dk

∫ ω+

ω−

dp0

[[
[fN (p0)− fF (p0 − q0)]

×
[ (

q2 +m2
N − (p0 − k)2

)
ρ+(p0 − q0, k)

+
(
−q2 −m2

N + (p0 + k)2
)
ρ−(p0 − q0, k)

]]
−
[
p0 → −p0

]]
. (3.20)

For the q = 0 mode, the x-integration in (3.14)-(3.16) is trivial, and the δ-function can be

used to perform the p0-integral. This yields

Π̃>
Φ(q)|q=0 =

−i2ỹ2

(2π)2

∫ ∞
0

dk
k2

ω̃k

[
fF (ω̃k − q0) [1− fN (ω̃k)]
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× [(ω̃k − k)ρ+(ω̃k − q0, k) + (ω̃k + k)ρ−(ω̃k − q0, k)]

−
[
q0 → −q0

]]
, (3.21)

Π̃<
Φ(q)|q=0 =

−i2ỹ2

(2π)2

∫ ∞
0

dk
k2

ω̃k

[
[1− fF (ω̃k − q0)] fN (ω̃k)

× [(ω̃k − k)ρ+(ω̃k − q0, k) + (ω̃k + k)ρ−(ω̃k − q0, k)]

−
[
q0 → −q0

]]
, (3.22)

Π̃−Φ(q)|q=0 =
i2ỹ2

(2π)2

∫ ∞
0

dk
k2

ω̃k

[
[fN (ω̃k)− fF (ω̃k − q0)]

× [(ω̃k − k)ρ+(ω̃k − q0, k) + (ω̃k + k)ρ−(ω̃k − q0, k)]

−
[
q0 → −q0

]]
, (3.23)

where ω̃k = (m2
N + k2)1/2. Note that the above can be also obtained from more general

expression (3.20) by taking limit q → 0, which gives ω+ − ω− ≈ 2qk/ω̃k for the integral

interval, and by setting p0 = ω̃k in the integrand. In (3.23) the δ-functions in ρpole
± in

principle allow to perform one more integration in the pole part analytically, but due to

the appearance of Ω± it is in general not possible to find the zero analytically.

3.2 Production in decays: analytic approximations

For MΦ �Mf +mN the decay products have momenta ∼MΦ/2 that are large compared

to the typical energy ∼ T of particles in the plasma. In this regime, one can approximate

Z+ ' 1 , Z− ' 0 , Ω2
+ ' k2 + M2

f , ρ
cont
± ' 0 . (3.24)

Physically this approximation of Z± means that the decay into holes can be neglected,

which is intuitive because collective excitations are an infrared phenomenon that is only

relevant for soft momenta. The screened particles with hard momenta have a dispersion

relation like free particles, but with the vacuum mass replaced by the momentum inde-

pendent thermal mass Mf . This is also intuitive because the dispersion relation must be

simple if the momentum exceeds all other scales in the problem, hence one expects that

it is given by a constant mass term due to forward scattering. Neglecting the continuous

part of ρΨ means that we only consider the contribution to Γ̃Φq from 1 → 2 decays and

their inverse, which is reasonable at low T .

Self-energies. With the approximations (3.24) the integrals in (3.21)–(3.23) can be

solved analytically, i.e.

Π̃>
Φ(q)|q=0 '

−iỹ2

π

Qq0 + M2
f −m2

N

2Qq0 + M2
f −m2

N

[1− fN (Q)] [1− fF (q0 −Q)]

×
[
Q2 −m2

N +Q
√
Q2 −m2

N

]
θ(q2

0 − (mN + Mf )2), (3.25)

Π̃<
Φ(q)|q=0 '

−iỹ2

π

Qq0 + M2
f −m2

N

2Qq0 + M2
f −m2

N

fN (Q) fF (q0 −Q)
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×
[
Q2 −m2

N +Q
√
Q2 −m2

N

]
θ(q2

0 − (mN + Mf )2), (3.26)

Π̃−Φ(q)|q=0 '
−iỹ2

π

Qq0 + M2
f −m2

N

2Qq0 + M2
f −m2

N

[1− fF (q0 −Q)− fN (Q)]

×
[
Q2 −m2

N +Q
√
Q2 −m2

N

]
θ(q2

0 − (mN + Mf )2) (3.27)

with

Q =
q2

0 +m2
N −M2

f

2q0
. (3.28)

(3.27) shows that Pauli blocking becomes important as soon as T exceeds the vacuum

Φ-mass mΦ even if there are no N -particles (α = 0). The reason is of course the Pauli

blocking of the Ψ-particles in the final state. If we set q0 = ΩΦq = MΦ, we can also again

observe the enhancement of the rate due to the thermal mass MΦ. Since Φ is charged, it

does not only receive a mass correction from its self-interaction, but also from the gauge

interaction, and we have to take

M2
Φ = m2

Φ +

(
λ

24
+
α2

4

)
T 2. (3.29)

The term α2T 2/4 arises because Φ carries a U(1) charge. If we were dealing with SM

leptons and a Higgs doublet, as considered in [91], the equivalent to Mf would be

M2
` =

1

16

(
3g2 + g′2

)
T 2, (3.30)

and the Higgs would have the thermal mass

M2
h =

1

16

(
3g2 + g′2 + 8λ

)
T 2 + Yukawa contributions, (3.31)

where the different constant factors arise from the hypercharges [111], cf. discussion af-

ter (3.10). If T is near or below the temperature where spontaneous symmetry breaking

occurs, there are additional contributions that are proportional to the temperature depen-

dent expectation value of the Higgs condensate ∝ 〈h̃†h̃〉 = 〈h†h〉 (and ∝ 〈h†νhν〉 in the

leptophilic two Higgs doublet model).

The expressions (3.25)–(3.27) can be significantly simplified if one neglects mN and

Mf , i.e.

Π̃>
Φ(q)|q=0 '

−iỹ2

4π
q2

0 [1− fF (q0/2)] [1− fN (q0/2)] , (3.32)

Π̃<
Φ(q)|q=0 '

−iỹ2

4π
q2

0 fF (q0/2) fN (q0/2) (3.33)

and

Π̃−Φ(q)|q=0 '
−iỹ2

4π
q2

0 [1− fF (q0/2)− fN (q0/2)] . (3.34)

Note that the assumption of massless final states is only justified if MΦ �Mf +mN at all

relevant temperatures, which in the large T limit is guaranteed by (3.29) and (3.10) only
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Figure 6. The ratio Γ̃Φq/Γ̃0 in the approximation (3.40) for q = 0, with β = 1 and MΦ given

by (3.29) and λ = 0, as a function of T . The blue curve is for α = 0, the red curve for α = 1. In the

upper plot the gauge coupling is chosen as α = 10−2, in the lower plot α = 1/2. The enhancement

of the rate due to the increasing thermal Φ-mass is similar to the scalar case and would be even

more prominent for λ 6= 0. For α = 0 the Pauli blocking can at most reduce Γ̃Φq by a factor 1/2,

for α > 0 a stronger suppression is possible.

if λ is sizable and Ψ does not have additional interactions. As in the singlet case, it is not

possible to find an analytic expression for Γ̃Φq with q 6= 0 without additional assumptions

about the phase space distribution function of N -particles. One can, however, again express

Γ̃Φq in terms of a one-dimensional integral. In the approximation mN = Mf = 0 of massless

final states and (3.24), the only contributing kinematic δ-function is the one corresponding

to the decay Φ→ NΨ and we find

Π̃>
Φ(q) =

−iỹ2

4πq

∫ (q0+q)/2

(q0−q)/2
dk [1− fN (q0 − k)] [1− fF (k)] (q2

0 − q2), (3.35)
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Π̃<
Φ(q) =

−iỹ2

4πq

∫ (q0+q)/2

(q0−q)/2
dk fN (q0 − k) fF (k) (q2

0 − q2), (3.36)

Π̃−Φ(q) =
−iỹ2

4πq

∫ (q0+q)/2

(q0−q)/2
dk [1− fF (k)− fN (q0 − k)] (q2

0 − q2), (3.37)

where the integration limits have again been fixed by the usual kinematic considerations.

Production rate. From these results, we finally obtain

Γ̃>Φq|q=0 ' Γ̃0
MΦ

mΦ
[1− fF (MΦ/2)] [1− fN (MΦ/2)] , (3.38)

Γ̃<Φq|q=0 ' Γ̃0
MΦ

mΦ
fF (MΦ/2) fN (MΦ/2), (3.39)

Γ̃Φq|q=0 ' Γ̃0
MΦ

mΦ
[1− fF (MΦ/2)− fN (MΦ/2)] . (3.40)

As in the previous section, we have expressed the thermal damping rate in terms of the

vacuum damping rate Γ̃0. Note that, compared to the singlet case, there is a symmetry-

factor 2 difference in the latter, i.e., in this section we use

Γ̃0 =
ỹ2mΦ

8π
(3.41)

instead of (2.32). For q 6= 0 we find

Γ̃>Φq =
ỹ2

8π

Ω2
Φq − q2

ΩΦqq

∫ (ΩΦq+q)/2

(ΩΦq−q)/2
dk [1− fN (ΩΦq − k)] [1− fF (k)] , (3.42)

Γ̃<Φq =
ỹ2

8π

Ω2
Φq − q2

ΩΦqq

∫ (ΩΦq+q)/2

(ΩΦq−q)/2
dkfF (k)fN (ΩΦq − k), (3.43)

Γ̃Φq =
Γ̃0

mΦ

Ω2
Φq − q2

ΩΦqq

∫ (ΩΦq+q)/2

(ΩΦq−q)/2
dk [1− fF (k)− fN (ΩΦq − k)] . (3.44)

With the approximation Ω2
Φq 'M2

Φ + q2, this reads

Γ̃Φq = Γ̃0
MΦ

mΦ

MΦ

ΩΦq

1

q

∫ (ΩΦq+q)/2

(ΩΦq−q)/2
dk [1− fF (k)− fN (ΩΦq − k)] . (3.45)

The physical interpretation of this expression is very simple and the same as discussed

following (2.41). From (3.5) we have

γ̃Φ(p,q) =
ỹ2π

q0ωNp

(
ωNp +

p2 − pq

|p− q|

)
[1− fN (ωNp)− fF (q0 − ωNp)] . (3.46)

This allows to derive an expression similar to (2.43) for the charged scalar case,

∂tfNp =
ỹ2

4π

∫ Ω2

Ω1

dΩΦq
ΩΦq − ωNp

pωNp

[
ωNp +

1

2ω̃

(
ω̃2 + p2 − q2

)]
× [1− fN (ωNp)− fF (ΩΦq − ωNp)]

[
fΦq − f̄Φq

]
(3.47)
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with ω̃ ≡
√

(ΩΦq − ωNp)2 −M2
f and

Ω2 =

ωNp(M2
Φ +m2

N −M2
f ) + p

√[
(MΦ + Mf )2 −m2

N

][
(MΦ −Mf )2 −m2

N

]
2m2

N

,

Ω1 = Max

MΦ,

ωNp(M2
Φ+m2

N−M2
f )−p

√[
(MΦ+Mf )2−m2

N

][
(MΦ−Mf )2−m2

N

]
2m2

N

 .
In the limit Mf = mN = 0 of massless final states, (3.47) simplifies to

∂tfNp =
Γ̃0

mφ

M2
Φ

p2

∫ ∞
M2
φ/(4p)+p

dΩΦq [1− fN (p)− fF (ΩΦq − p)]
[
fΦq − f̄Φq

]
, (3.48)

which can be compared to (2.43). Note that in contrast to the singlet case there is no

factor 2 in front of the integral because only one N -particle is produced in each decay.

These expressions hold for an arbitrary sterile neutrino phase space distribution. If

one assumes that fN can be approximated by the ansatz (1.3), then even the final integral

in (3.44) can be solved analytically for arbitrary q, i.e.

Γ̃Φq ' Γ̃0
MΦ

mΦ

MΦ

ΩΦq

[
T

q
log

fF
(

ΩΦq−q
2

)
fF

(
ΩΦq+q

2

)
+ α

−1 +
T

βq
log

fF
(
β

(ΩΦq−q)
2

)
fF

(
β

(ΩΦq+q)
2

)
]. (3.49)

The different factors in the results (3.45) and (3.49) have a simple physical interpretation,

which is exactly analogue to the discussion following (2.41). At low temperatures, they

reproduce the T = 0 decay rate. Once the temperature exceeds mΦ, Pauli-blocking of

the Ψ-particle in the final state suppresses Γ̃Φq. This effectively reduces Γ̃Φq (for q = 0,

T � MΦ and fN � 1 roughly by a factor 1/2). If there is a significant population of

N -particles (α ' 1), then Pauli blocking also applies to the N in the final state as soon as

the temperature approaches ∼ βmΦ. At even higher temperatures, when MΦ/mΦ � 1, the

thermal Φ-mass increases the rate again due to the reduced lifetime of a heavier particle.

For a potential of the form (2.29) this roughly happens at T > mΦ(24/λ)1/2. This behaviour

is illustrated in figures 6–8.

Up to now we have completely neglected the contributions from the holes Ω− as

well as the term ρcont
± . At T � mΦ/α this is justified because MΦ � Mf , so the decay

products’ momenta p ∼ MΦ/2 are hard with respect to the plasma. The holes Ω− are

relevant only in a small temperature interval: the suppression of Z− is only lifted when

the temperature is high enough that Mf ∼ MΦ, but low enough to keep MΦ > mN +ωf

because otherwise the decay into holes is kinematically forbidden. Outside this small

interval, we do not expect the holes Ω− to play an important role.

At this point one should compare the analytic expressions obtained in the singlet and

charged case, i.e., (2.26) to (3.37), (2.35) to (3.40), (2.41) to (3.44) and (2.44) to (3.49).

This comparison shows that, under the present assumptions, the production rates of sterile

neutrinos in singlet and charged scalar decays look almost the same and are governed by
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Figure 7. The rate Γ̃Φq in units of the time-dilated rate Γ̃0mΦ/ωΦq in the approximation (3.49)

for q = mΦ, with MΦ given by (3.29) and λ = 0, as a function of T . The blue curve is for α = 0,

the red curve for α = 1. In the upper plot the gauge coupling is chosen as α = 10−2, in the lower

plot α = 1/2. As in figure 6, the enhancement of the rate due to the increasing thermal Φ-mass

is similar to the scalar case and would be even more prominent for λ 6= 0. For α = 0 the Pauli

blocking can at most reduce Γ̃Φq by a factor 1/2, for α > 0 a stronger suppression is possible.

the same physical effects, namely Pauli blocking and “thermal masses” in the plasma. The

only differences are the occupation numbers (the charged particles in the final state of

Φ-decays are in thermal equilibrium) and the actual values of the thermal masses (which

depend on the interactions that are responsible for forward scatterings and screening).

There is, however, another difference. In the singlet-model (2.1) with tiny y, N -particles

are in very good approximation only produced in φ-decays. The contribution to Γ̃φq from

scatterings is suppressed by additional powers of the coupling y and fN .8 Physically this

8This of course assumes that the N have no other interactions at the relevant temperatures. If the N are

charged under an additional gauge symmetry, this entirely changes the situation, and scatterings usually

bring them into thermal equilibrium.
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Figure 8. The rate Γ̃Φq in units of the time-dilated rate Γ̃0mΦ/ωΦq in the approximation (3.49)

for T = 100mΦ, with MΦ given by (3.29) and λ = 0 as a function of q. The blue curve is for

α = 0, the red curve for α = 1. In the upper plot the gauge coupling is α = 10−2, in the lower plot

α = 1/2. As usual, at high temperatures, the increased thermal mass MΦ leads to a larger rate

than the vacuum estimate Γ̃0mΦ/ωΦq suggests. The effect is larger for stronger gauge coupling and

would be more prominent for λ 6= 0.

means that N -particles effectively do not interact with the plasma any more after they

have been produced. Mathematically it implies that the free spectral density (2.16) is a

good approximation for ρN . In the model (3.2), on the other hand, the Φ-particles and

Ψ-particles are charged. At sufficiently large T , their number density is large enough that

they scatter frequently, and one expects that N -particles can be produced in scatterings

(rather than decays). Mathematically this is reflected by the fact that the expression (3.6)

for ρΨ does not only consist of the pole-contribution (3.8), which is equivalent to (2.16),

but also the continuous part (3.9), which we have ignored so far.
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Figure 9. The ratio Γ̃Φq/Γ̃0 for q = 0, with MΦ given by (3.29), λ = 1, α = 1/10 and α = 0 as a

function of T . The solid black curve is obtained from numerical evaluation of (3.23), the blue curve

shows the approximation (3.40). The gray curves are the individual contributions to (3.23) from

the pole contributions ρpole
± (dashed) and the continuum ρcont

± (dotted) in ρΨ as given in (3.6).

3.3 Full damping rate and scatterings

As pointed out above, the decay Φ → NΨ is Pauli suppressed for T > mΦ, leading to a

factor 1/2 suppression of Γ̃Φq for fN � 1 and a bigger suppression for fN ∼ 1.9 On the

other hand, the continuum contribution from ρcont
± grows with temperature. It is strongly

dominated by the ρcont
− (ω̃k − q0)-term. This can be understood physically because this

contribution comes from Landau damping due to scatterings, and the number of possible

scattering partners in the bath increases. To incorporate all these effects, we have to solve

the integral in (3.23) numerically. The result is shown in figures 9 and 10.

Regimes and scenarios. One can clearly distinguish different temperature regimes. For

T � mΦ, the vacuum decay rate is an excellent approximation. For mΦ . T < mΦ/α the

main effect of the plasma is the suppression of Γ̃Φq due to Pauli blocking, and (3.40) is a

good approximation. For MΦ � mΦ the thermal correction (3.29) to the Φ-mass kicks in

and enhances Γ̃Φq again. (3.40) remains to be a good approximation. What happens at

larger temperatures depends on the value of λ.

Let us first set λ � α2. This situation is shown in figure 9. In this case the hierar-

chy MΦ � Mf holds at all temperatures because the thermal Φ-mass is larger than the

asymptotic Ψ-mass. Then (3.24) can be applied even at large temperatures, (3.40) remains

9For MΦ < Mf the decay can in principle even become completely forbidden kinematically, but in our

model this is not possible unless mN > mΦ because the thermal Φ-mass corrections is always at least as

big as the thermal Ψ-mass.
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Figure 10. Same as figure 9, but for λ = 0.

a valid approximation at T > mΦ/α, and the discussion following (3.49) applies. That

is, (3.44) and (3.47) can be used to compute fNp for all temperatures if λ� α2.10

The situation λ� α2 is shown in figure 10. In this case, the ratio Mf/MΦ approaches

unity for large temperatures. The approximations for Ω+ and Z+ in (3.24) start to break

down at T ∼ mΦ/α, which can be seen from the fact that the blue line in figure 10

deviates from the gray dashed line. The reason is that (3.24) is based on the assumption

that the produced Ψ-quasiparticles have large momenta p � Mf = αT/2 with respect

to the plasma, which is only true for MΦ � Mf ,mN . If this is not fulfilled, the pole

contribution becomes sensitive to the details of the fermion dispersion relations Ω± in

the infrared. At the same time, the contribution from the continuum part ρcont
± , which

is negligible for all lower temperatures, starts to dominate. This contribution can be

interpreted as Φ-annihilation in scatterings. The resulting total rate Γ̃Φq grows linear

with T (as expected due to the increasing number density of scattering partners), but

with a coefficient that is larger than predicted by (3.40). We have verified this for different

choices of the parameters, but it is not clear at this stage if a simple analytic expression

for the coefficient can be found. Note that figure 10 shows the result for the zero-mode

q = 0. For q 6= 0 the validity of (3.24) extends to larger temperatures because the

decay product’s momenta in the plasma rest frame are larger. For small values of λ, our

simple results therefore hold only up to temperatures T ∼ mΦ/α; at higher temperatures

Γ̃Φq is dominated by scatterings, and the integrals (3.21)–(3.23) have to be evaluated

10One may wonder why the decay approximation holds for arbitrarily high temperatures. Since the

number density of scattering partners grows with T , one would expect that Φ-annihilation in scatterings

should dominate over Φ-decay at sufficiently high temperature. One physical explanation is that the Φ-

quasiparticles simply are too short lived due to their large thermal mass to find a scattering partner before

they decay. For λ = 0, the thermal mass and scattering rate are determined by the same gauge coupling

constant α, and scatterings indeed become more efficient at some temperature, cf. dotted line in figure 10.

For λ � α the large thermal mass (3.29) ensures that the decay rate always remains larger than the

scattering rate.
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numerically. Since the N -momentum cannot be reconstructed from q in a scattering, one

cannot use (3.47) to calculate fNp. One can, however, still use a rate equation (3.3) to

compute the total DM density. If one is interested in the DM momentum distribution

in the regime where N -particles are predominantly produced in scatterings, it would be

more convenient to directly evaluate the fermionic self-energies Σ≷
N with nonequilibrium

propagators in the loop to determine the production rate from (A.37). This goes beyond

the scope of the present work, which is focused on DM scalar decays.

A comment on scatterings. We have used resummed thermal Ψ-propagators to ac-

count for thermal corrections to Γ̃Φq. This does not only allow to take quantum statistical

factors and the correct quasiparticle dispersion relations in the decays Φ → NΨ into ac-

count, but also includes some of the contributions to Γ̃Φq due to scatterings. These are

encoded in the continuous part of ρΨ. In the HTL-approximation (3.9), this continuous

part is non-zero only for x2 < 1. The resulting contribution to Γ̃Φq can be interpreted as

Landau damping due to logarithmically enhanced t-channel scatterings [112]. The full ρΨ

(beyond HTL) would also give a contribution for x2 > 1, which corresponds to s-channel

scatterings. These are, however, not logarithmically enhanced. Therefore the use of the

HTL approximation corresponds to a systematic expansion in the gauge coupling to leading

log in α [112].

Additional contributions from scatterings have been studied by different authors [112–

118] for the case that Φ is identified with the SM-Higgs and mN � mΦ (while we assumed

mN � mΦ). In the high temperature regime T � MΦ � mN ,mΦ, the difference in the

hierarchy of vacuum masses mN and mΦ should be negligible because the thermal mass

corrections dominate the kinematics. A direct comparison is nevertheless difficult because

the authors of the above works numerically calculated the inclusive rate ΓN under the

assumption that Φ is in equilibrium. This situation is e.g. realised in several leptogenesis

scenarios. For the case of sterile neutrino DM production considered here, the phase space

distribution fΦ for Φ is a dynamic quantity that in general deviates from equilibrium (in

particular in the “freeze-in” scenario). Even if we fix fΦ to a Bose-Einstein distribution and

obtain a total production rate from (3.3), the result still depends on the choice of gauge

group under which Φ is charged. While it is straightforward to generalise the analytic

result (3.49) we found from U(1) interactions to an arbitrary SU(N) gauge group by making

the replacements discussed after (3.10), there appears to be no simple way to obtain the

contribution from multiple scatterings for general SU(N) interactions and non-equilibrium

Φ from the numerical results in the literature. The discussion of the approximations made

in [112, 114], however, suggests that the contributions from vertex- and ladder-diagrams are

not logarithmically enhanced, and that our treatment is accurate to leading log order in the

gauge coupling α. In conclusion, the above considerations suggest that calculation of Γ̃Φq

is accurate to order ỹ2 in the Yukawa coupling and order α2 logα−2 in the gauge coupling.

4 Discussion and conclusions

We have studied thermal corrections to the production rate of singlet fermions N in the

decay of neutral scalars φ and charged scalars Φ in a hot plasma. This rate determines the
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total abundance and momentum distribution of Dark Matter particles in scenarios where

sterile neutrino Dark Matter is produced in the decay of heavier particles. With some modi-

fications that account for the different spin, our results may be generalised to the production

of other DM candidates in decays, including gravitinos [119–123] or WIMPs [125–127].

We found that the sterile neutrino production rate receives considerable thermal cor-

rections if the plasma temperature T exceeds the mass of the decaying scalar. Our main

results include expressions (2.43) and (3.47), which can be used to determine the abun-

dance and momentum distribution of heavy neutrinos produced in decays. They are based

on the gain- and loss rates (2.33)–(2.42) for singlet decays and (3.38)–(3.46) for charged

scalar decays. Our methods is not suitable to compute the heavy neutrino momentum

distribution when the heavy neutrinos are produced in scatterings. It is, however, still

possible to determine their total number density in such scenarios from (2.8), (3.3) and by

the methods described in section 3.3.

If the scalar is a gauge singlet and decays as φ → NN , then the N -particles in the

final state are not significantly affected by the plasma as long as their occupation numbers

remain well below the equilibrium value, which is the case in many scenarios studied

in the literature. In this case the main thermal correction comes from the fact that φ-

quasiparticles in a thermal bath are screened and pick up a thermal mass. The thermal

mass correction appears even if φ is a gauge singlet because it must have some interactions

to be produced in the early universe. The effective mass Mφ in the plasma grows with T

and the coupling constant λ; for T � mφ/
√
λ it is much larger than the vacuum mass mφ.

Since the decay rate is larger for heavier quasiparticles (Γ̃φq ∝Mφ), this enhances the DM

production rate significantly. Equation (2.41) gives the thermally corrected production rate

Γ̃φq in this case. The effective mass Mφ therein can be determined once the φ-interactions

are specified. The momentum distribution of the DM can be calculated from (2.43).

If the scalar Φ is charged under some gauge group, then at least one of the final state

particles in the decay (which we call Ψ) must also carry a charge. This particle is typically

in equilibrium in the early universe. This leads to Pauli blocking as soon as the temperature

exceeds the scalar mass (T > mΦ). The behaviour at higher temperatures depends on the

effective masses MΦ and Mf of Φ and Ψ. If MΦ � Mf at all temperatures, then the

dominant contribution to Γ̃Φq at all temperatures comes from the decay Φ → ΨN , and

the decay products with energies ΩΨ ' Ω+ and ΩN ' ωN are always relativistic. In this

case the rate Γ̃Φq is given by (3.44), as illustrated in figure 9. The behaviour can easily

be understood as the interplay between Pauli blocking, the enhancement of the decay rate

due to the effective Φ-mass MΦ and the increased lifetime of a particle that moves in the

plasma due to time dilatation (to be calculated with thermal masses): Γ̃Φq is suppressed

for T ∼ mΦ due to Pauli blocking, but grows linearly with T for MΦ � mΦ. This situation

is usually realised if Φ has some other interactions (in addition to the gauge coupling

that increases the mass of both, Φ and Ψ). We performed the calculation explicitly for

an U(1) gauge interaction of Φ. At the order in perturbation theory considered here, it

is straightforward to obtain the results for each component of a general SU(N) multiplet

from (3.40), (3.44) and (3.49) by making the replacements described after (3.10). Hence,

analytic results allow for a simple inclusion of thermal corrections in the regime where N
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is predominantly produced in quasiparticle decays of U(1) or SU(N) charged scalars. The

DM momentum distribution can be obtained from (3.47).

If at some temperature Mf becomes comparable to MΦ, then the Ψ-quasiparticles that

are produced in the Φ→ ΨN decay are not relativistic. In this case the decay rate becomes

sensitive to the complicated infrared behaviour of fermion dispersion relations in a plasma.

For Mf > MΦ the decay may even become kinematically forbidden. At the same time other

processes, such as inelastic scatterings, contribute to heavy neutrino production. In this

scenario it seems difficult to obtain an analytic expression for the scalar damping rate Γ̃Φq.

Qualitatively the behaviour is similar to (3.49), as illustrated in figure 10: Γ̃Φq is suppressed

for T ∼ mΦ due to Pauli blocking, but grows linearly with T for MΦ � mΦ. However, we

cannot easily determine the coefficient in the relation Γ̃Φq ∝ T in the high temperature

regime. The precise value of this factor depends on the gauge group, the coupling constant

and the thermodynamic state of Φ, and it can only be determined numerically.
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A Nonequilibrium quantum field theory

Correlation functions in a medium. The usual methods to calculate S-matrix ele-

ments are not suitable to describe nonequilibrium systems at large density because there is

no well-defined notion of asymptotic states, and the properties of quasiparticles in a medium

may significantly differ from those of particles in vacuum. However, observables can always

be expressed in terms of correlation functions of the quantum fields, without reference to

asymptotic states or free particles. There are two independent two point functions for each

field. For a real scalar field φ these are often chosen to be the connected Wightman functions

∆>(x1, x2) = 〈φ(x1)φ(x2)〉c , ∆<(x1, x2) = 〈φ(x2)φ(x1)〉c, (A.1)

where the 〈. . .〉 is to be understood in the sense of the usual quantum statistical average

〈. . .〉 = Tr(% . . .) of a system characterised by a density operator %. For a fermion Ψ the

corresponding definitions are

S>αβ(x1, x2) = 〈Ψα(x1)Ψ̄β(x2)〉c , S<αβ(x1, x2) = −〈Ψ̄β(x2)Ψα(x1)〉c. (A.2)
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Here α and β are spinor indices, which we suppress in the following. We will mostly be

concerned with fermions, and the Wightman functions S≷ will be needed to calculate

Feynman diagrams. Their linear combinations

∆−(x1, x2) = i
(
∆>(x1, x2)−∆<(x1, x2)

)
(A.3)

∆+(x1, x2) =
1

2

(
∆>(x1, x2) + ∆<(x1, x2)

)
(A.4)

S−(x1, x2) = i
(
S>(x1, x2)− S<(x1, x2)

)
(A.5)

S+(x1, x2) =
1

2

(
S>(x1, x2) + S<(x1, x2)

)
(A.6)

have an intuitive physical interpretations. The spectral function S− roughly speaking

characterises the spectrum of quasiparticles in the plasma. If Ψ is weakly coupled to a

thermal bath, then S−(x1, x2) = S−(x1−x2) depends only on the relative coordinate even

if Ψ itself is out of equilibrium and S+ is time dependent [95]. Then we can express S−

as the Fourier transform of the spectral density ρ(q),

S−(x1 − x2) = i

∫
d4q

(2π)4
ρ(q) e−iq(x1−x2), (A.7)

which can be viewed as a definition for ρ(q). In a weakly coupled theory, the pole

structure of ρ(q) determines the dispersion relations in the plasma: the real parts of poles

correspond to quasiparticle energies, the imaginary parts are the thermal widths of the

quasiparticles, see (A.25) and (A.26). The statistical propagator S+ provides a measure

for the occupation numbers. The correlators fulfil the symmetry relations

γ0S
−(x2, x1) = −

(
γ0S

−(x1, x2)
)†

(A.8)

γ0S
+(x2, x1) =

(
γ0S

+(x1, x2)
)†
, (A.9)

which can be seen from the definitions. If Ψ is a Majorana fermion, then there is an

additional symmetry

S≷(x1, x2) = CS≷(x2, x1)TC†, (A.10)

where C is the charge conjugation matrix. S− has the boundary condition

S−(x1, x2)|t1=t2 = iγ0δ(x1 − x2), (A.11)

which follows from the canonical anticommutation relations. The boundary conditions for

the statistical propagator are determined by the physical initial conditions in which the

system is prepared.

Kadanoff-Baym ansatz. It is reasonable to assume that all fields with gauge interac-

tions are in thermal equilibrium at the time when N gets produced. We will adopt that

assumption in this work. The scalar φ may or may not be in equilibrium, depending on

whether N production during freeze-in is relevant. Nonequilibrium propagators for scalars

have e.g. been studied in [95, 128–130]. We will, however, not need them here because φ
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only appears as external particle. In thermal equilibrium at temperature T ,11 the correla-

tion functions only depend on the relative coordinate x1−x2,12 and they are related by the

Kubo-Martin-Schwinger (KMS) relations, which are most conveniently written in terms of

their Fourier transforms. In absence of chemical potentials they read

∆<(q) = e−q0/T∆>(q) , S<(q) = −e−q0/TS>(q) . (A.12)

These allow to express the momentum space two-point functions in terms of the spectral

densities,

S−(q) = iρ(q) , S+(q) =

(
1

2
− fF (q0)

)
ρ(q) ,

S>(q) = (1− fF (q0))ρ(q) , S<(q) = −fF (q0)ρ(q) .

(A.13)

Here fF (q0) = (eq0/T + 1)−1 is Fermi-Dirac distribution, which naturally arises as a conse-

quences of the boundary conditions for the correlation functions.

The KMS-relations (A.13) in principle do not hold for N because the sterile neutrinos

are not in thermal equilibrium. Explicit expressions for the propagators of Majorana

fermions out of thermal equilibrium have been found in [132–137], but lead to rather

complicated calculations when being used in loop integrals. Since N couples weakly to φ

and the thermal bath, the time scale 1/ΓNp on which the occupation numbers evolve is

slow compared to the time scale of microscopic processes in the plasma. This justifies to

assume that a relation of the form

S+
N (q) =

(
1

2
− fN (q0)

)
ρN (q) (A.14)

holds locally, which is known as Kadanoff-Baym ansatz. Here fN is a function that can be

interpreted as N -distribution function. It changes on macroscopic time scales � 1/Γφq.

It is known that this ansatz does not exactly hold [128, 129], but it should be sufficient

for the present purpose. The Kadanoff-Baym ansatz allows to postulate relations similar

to (A.13) also for N locally in time, in spite of the fact that N is not in equilibrium,

S−N (q) = iρN (q) , S+
N (q) =

(
1

2
− fN (q0)

)
ρN (q) ,

S>(q) = (1− fN (q0))ρN (q) , S<(q) = −fN (q0)ρN (q) .

(A.15)

By using a single scalar function fN , we already assumed that the different helicity states

of N all have the same occupation number, which seems reasonable. The function fN must

fulfil the relation

fN (−q0) = 1− fN (q0), (A.16)

which follows directly from the Majorana condition (A.10) and does not rely on any as-

sumption about the phase space distribution function of N -particles. This can alternatively

11We work in the rest frame of the bath, where T has a physical interpretation as temperature. Due to

the choice of frame the expressions are not Lorentz-invariant. This choice is for convenience, the theory can

of course be formulated in a covariant manner [131].
12Vacuum can be seen as a special case of thermal equilibrium with T = 0.
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be found by demanding that there is no charge associated with N present in the plasma,

which corresponds to the requirement that∫
dq0

2π
tr[γ0S

+(q)] = 0. (A.17)

If evaluated at on-shell values q0 = ΩNq > 0, where ΩNq is the mass shell of N -

(quasi)particle, the function fN (ΩNq) can be interpreted as the physical phase space dis-

tribution function fNq of these quasiparticles in the plasma,

fNq = fN (ΩNq) . (A.18)

Brownian motion. If φ is weakly coupled to a thermal bath, then dissipative effects

can be described by a damping rate Γφq, which can be extracted from the pole structure

of the scalar spectral density

ρφ(q) = −i∆−(q) = −i
∫

d4x

(2π)4
∆−(x) eiqx. (A.19)

For a scalar φ that couples to a plasma in equilibrium, ρφ(q) at leading order can be

expressed as

ρφ(q) =
−2ImΠR

φ (q) + 2q0ε

(q2
0 −m2

φ − q2 − ReΠR
φ (q))2 + (ImΠR

φ (q) + q0ε)2
(A.20)

even if φ itself is not in equilibrium [95]. Here the retarded self-energy ΠR
φ (q) depends on

T . Let Ω̂q be a pole of ρφ(q), with

Ωφq ≡ ReΩ̂q and Γφq ≡ 2ImΩ̂q. (A.21)

In weakly coupled theories one observes the hierarchy

Γφq � Ωφq (A.22)

and can make the Breit-Wigner approximation

ρBW
φ (q) = 2Z

q0Γφq
(q2

0 − Ω2
φq)2 + (q0Γφq)2

+ ρcont
φ (q), (A.23)

with the residue

Z =

[
1− 1

2Ωφq

∂ReΠR
φ (q)

∂q0

]−1

q0=Ωφq

. (A.24)

Then the dispersion relations can be obtained by solving the equation

Ω2
φq − q2 −m2

φ − ReΠR
φ (q)

∣∣
q0=Ωφq

= 0, (A.25)

and the φ-damping rate Γφq that we aim to calculate is given by the imaginary part of the

retarded self energy at the quasiparticle pole q0 = Ωφq,

Γφq = −Z
ImΠR

φ (q)

q0

∣∣∣
q0=Ωφq

. (A.26)
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Γφq and Ωφq depend on T due to the temperature dependence of ΠR
φ (q). The appearance of

the imaginary part can be interpreted as finite temperature version of the optical theorem.

The rate (A.26) is the thermal damping rate for φ-quasiparticles. The contribution to it

from Feynman diagrams involving N can be used to determine production rate for N -

particles. We have assumed that the screened single particle states are the only relevant

quasiparticles, i.e., collective scalar excitations [138] play no role. If the N -particles are

produced from the decay of a coherent condensate ϕ ≡ 〈φ〉, the rate (A.26) is still applicable

if this production happens during oscillations near the minimum of the effective potential

V(ϕ), see e.g. [93]. Analogous to ∆≷, one can introduce self-energies Π≷
φ

13 and define

Π−φ (q) ≡ Π>
φ (q)−Π<

φ (q) = 2iImΠR
φ (q). (A.27)

This allows to rewrite

Γφq = Z
iΠ−φ (q)

2q0

∣∣∣
q0=Ωφq

= Γ>φq − Γ<φq, (A.28)

where

Γ<φq = Z
iΠ<

φ (q)

2Ωφq
|q0=Ωφq (A.29)

Γ>φq = Z
iΠ>

φ (q)

2Ωφq
|q0=Ωφq (A.30)

are the gain and loss rate for φ-particles, which in total give the thermal damping rate Γφq.

The thermal width Γφq does not only determine the damping of the spectral function ∆−

via (A.20), it also governs the relaxation of the statistical propagator to its equilibrium

form, which in the approximation (A.22) reads [96]

∆+
q (t1, t2) '

∆+
q;in

2
[cos(Ωφq(t1 + t2) + cos[Ωφq(t1 − t2)]] e−Γφq(t1+t2)/2

+
∆̇+

q;in

Ωφq
sin[Ωφq(t1 + t2)]e−Γφq(t1+t2)/2−

∆̈+
q;in

2Ω2
φq

[cos[Ωφq(t1 + t2)]−cos[Ωφq(t1 − t2)]) e−Γφq(t1+t2)/2

+
coth(

Ωφq
2T )

2Ωφq
cos[Ωφq(t1 − t2)]

(
1− e−Γφq(t1+t2)/2

)
e−

Γφq|t1−t2|/2, (A.31)

where ∆+
q;in, ∆̇+

q;in and ∆̈+
q;in are boundary conditions for the statistical propagator

and its derivatives at t1 = t2 = 0. The choice ∆+
q;in = 1

Ωφq
[1
2 + fφq(0)], ∆̇+

q;in = 0,

∆̈+
q;in = Ωφq[1

2 + fφq(0)]), which can be interpreted as a quantum state with well-defined

quasiparticle occupation number fφq, simplifies (A.31) to

∆+
q (t1, t2) '

cos[Ωφq(t1 − t2)]

Ωφq
e−Γφq(t1−t2)

[
1

2
+ fφq(t)

]
, (A.32)

13In the Schwinger-Keldysh-formalism, Π<
φ (x1, x2) corresponds to a self-energy where the first time argu-

ment lies on the “forward” part of the closed time path and the second argument lies on the “backwards”

part. For Π>
φ (x1, x2) it is the other way around.
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where t = (t1 + t2)/2 and fφq(t) = fB(Ωφq) + [fφq(0) − fB(Ωφq)]e−Γφqt is the solution to

the Boltzmann equation

∂tfφq(t) = −Γφq[fφq(t)− fB(Ωφq)]. (A.33)

Here fB(Ω) = (eΩ/T − 1)−1 is the Bose-Einstein distribution. Finally, the modes of the

mean field ϕ = 〈φ〉 obey an equation of motion of the form

ϕ̈q + Γϕqϕ̇q + ∂ϕV(ϕq) = 0, (A.34)

where V(ϕ) is the finite temperature effective potential. Near its minimum Γϕq = Γφq [93].

Hence, Γφq in this situation is the sole damping scale in the system [129]. With the KMS-

relation Π<
φ (q) = e−q0/TΠ>

φ (q) it is easy to see that the detailed balanced relation

Γ<φq
Γ>φq

= e−Ωφq/T (A.35)

holds and the total relaxation rate Γφq can be related to the φ-production rate Γ<φq via [92]

Γ<φq = fB(Ωφq)Γφq. (A.36)

These relations hold to all orders in the couplings amongst the thermal bath’s con-

stituents [139]. Analogous to (A.29) and (A.30) one can find a damping rate Γq for fermionic

correlation functions S±,

Γ≷q = Zq

itr[/qΣ≷(q)]

2q0

∣∣
q0=ΩΨq

, (A.37)

where ΩΨq is a fermionic quasiparticle pole and Σ≷ are fermionic self-energies define anal-

ogous to Π≷
φ .

Damping rate far from equilibrium. The expressions following (A.19) apply if all

propagators Feynman diagrams that contribute to the self energies Π≷
φ fulfil KMS-relations

like (A.12). This is in good approximation the case if φ couples weakly to a larger thermal

bath. This is not the case in the present calculation because neither the scalar field not

N are in equilibrium in general. Without this assumption, the nonequilibrium correlation

functions can be expressed as [128]

∆−q (t1, t2) =
sin
(∫ t1

t2
dt′Ωφq(t′)

)
e
− 1

2

∣∣∣∫ t1t2 dt′Γφq(t′)
∣∣∣

2
√

Ωφq(t1)Ωφq(t2)
, (A.38)

∆+
q (t1, t2) =

cos
(∫ t1

t2
dt′Ωφq(t′)

)
e
− 1

2

∣∣∣∫ t1t2 dt′Γφq(t′)
∣∣∣

2
√

Ωφq(t1)Ωφq(t2)
[1 + 2fφq(t)] , (A.39)

where t = min(t1, t2). Note that (A.38) and (A.39) can be derived from first principles,

without the Kadanoff-Baym ansatz (A.14). Here fφq can be interpreted as the quantum

mechanical generalisation of a phase space distribution function. On macroscopic time
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scales, and if the damping is primarily driven by decays and inverse decays, its evolution

is governed by the Markovian equation of motion

∂tfφq(t) = (1 + fφq(t)) Γ<φq(t)− fφq(t)Γ>φq(t). (A.40)

Formally this equation can be casted in the same form as (A.33)

∂tfφq(t) = −Γφq(t)
[
fφq(t)− f̄φq(t)

]
, (A.41)

by defining

f̄φq(t) ≡ (Γ>φq(t)/Γ<φq(t)− 1)−1. (A.42)

In the special case that φ couples to a large thermal bath, one can easily recover (A.33)

from (A.41) by using (A.35). In this case f̄φq → fB is time independent, and its values for

all modes q are fixed by a single parameter T . In general this is, however, not the case.
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[105] C.P. Kiessig, M. Plümacher and M.H. Thoma, Decay of a Yukawa fermion at finite

temperature and applications to leptogenesis, Phys. Rev. D 82 (2010) 036007

[arXiv:1003.3016] [INSPIRE].

[106] H.A. Weldon, Effective fermion masses of order gT in high temperature gauge theories with

exact chiral invariance, Phys. Rev. D 26 (1982) 2789 [INSPIRE].

[107] V.V. Klimov, Spectrum of elementary Fermi excitations in quark gluon plasma (in

Russian), Sov. J. Nucl. Phys. 33 (1981) 934 [Yad. Fiz. 33 (1981) 1734] [INSPIRE].

[108] A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96

(1980) 289 [INSPIRE].

[109] E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis,

Nucl. Phys. B 337 (1990) 569 [INSPIRE].

[110] V.V. Klimov, Collective excitations in a hot quark gluon plasma, Sov. Phys. JETP 55

(1982) 199 [Zh. Eksp. Teor. Fiz. 82 (1982) 336] [INSPIRE].

[111] J.M. Cline, K. Kainulainen and K.A. Olive, Protecting the primordial baryon asymmetry

from erasure by sphalerons, Phys. Rev. D 49 (1994) 6394 [hep-ph/9401208] [INSPIRE].

[112] B. Garbrecht, F. Glowna and P. Schwaller, Scattering rates for leptogenesis: damping of

lepton flavour coherence and production of singlet neutrinos, Nucl. Phys. B 877 (2013) 1

[arXiv:1303.5498] [INSPIRE].
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