1,745 research outputs found

    Heteroepitaxal fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures

    Get PDF
    We report on heteroepitaxial fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures. The coaxial nanorod heterostructures were fabricated by epitaxial growth of a GaN layer on ultrafine ZnO nanorods. Epitaxial growth and precise control of GaN overlayer thickness were obtained by low pressure metalorganic vapor-phase epitaxy. ZnO nanorods grown on Si and sapphire substrates using catalyst-free metalorganic chemical vapor deposition exhibited diameters as small as 7 nm. Furthermore, structural properties of the coaxial nanorod heterostructures were investigated using both synchrotron-radiation x-ray diffraction and high resolution transmission electron microscopy. (C) 2004 American Institute of Physics.open115462sciescopu

    Growth, Reproductive Condition, And Digestive Tubule Atrophy Of Pacific Oyster Crassostrea Gigas In Gamakman Bay Off The Southern Coast Of Korea

    Get PDF
    Spat of Pacific oysters (Crassostrea gigas) were collected from Gamakman Bay, Korea, and raised in a spat hardening facility located in the low intertidal zone of the bay for a hardening/stunting period of 10 mo. Seasonal changes in growth, reproductive condition, and digestive tubule atrophy (DTA) of these hardened/stunted oysters were monitored for more than a year after transplanting to a suspended longline system in a grow-out area in the bay. After transplantation, the hardened/stunted oysters showed a logarithmic increase in shell size for the first 4 mo, from June to October, and growth remained stable from late fall to early spring. During the 12 mo of the grow-out, the shell size of the hardened/stunted oysters increased from 15.4-74.2 mm, and tissue weight increased from 0.49-12.85 g. Histological analysis revealed that gametogenesis of hardened/stunted oysters commenced as early as February when water temperature remained at 10 degrees C, and spawning occurred from July to September when water temperature reached 25-27 degrees C. DTA assessed from histological analysis was higher from September to February, when the chlorophyll a level in the bay was lower. These data suggest that seasonal fluctuations in water temperature and food availability in the water column are the 2 main environmental parameters governing reproduction and growth of oyster in Gamakman Bay, and DTA could be a useful biomarker for monitoring the nutritional condition of oysters

    Preclinical Optimization and Safety Studies of a New Lentiviral Gene Therapy for p47phox-Deficient Chronic Granulomatous Disease

    Get PDF
    Chronic granulomatous disease (CGD) is an inherited blood disorder that renders patients susceptible to infections and inflammation. A recent clinical trial of lentiviral gene therapy for the most frequent form of CGD, X-linked, has demonstrated stable correction over time, with no adverse events related to the gene therapy procedure. We have recently developed a parallel lentiviral vector for p47-deficient CGD (p47phoxCGD), the second most common form of this disease. Using this vector, we have observed biochemical correction of CGD in a mouse model of the disease. In preparation for clinical trial approval, we have performed standardised pre-clinical studies following Good Laboratory Practice (GLP) principles, to assess the safety of the gene therapy procedure. We report no evidence of adverse events, including mutagenesis and tumourigenesis, in human haematopoietic stem cells transduced with the lentiviral vector. Biodistribution studies of transduced human CD34+ cells indicate that the homing properties or engraftment ability of the stem cells is not negatively affected. CD34+ cells derived from a p47phoxCGD patient were subjected to an optimised transduction protocol and transplanted into immunocompromised mice. After the procedure, patient-derived neutrophils resumed NADPH oxidase production in vivo, suggesting that gene correction was successful. These studies pave the way to a first-in-man clinical trial of lentiviral gene therapy for the treatment of p47phoxCGD

    Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon

    Get PDF
    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.Publisher PDFPeer reviewe

    Application of functionalized nanofluid in thermosyphon

    Get PDF
    A water-based functionalized nanofluid was made by surface functionalizing the ordinary silica nanoparticles. The functionalized nanofluid can keep long-term stability. and no sedimentation was observed. The functionalized nanofluid as the working fluid is applied in a thermosyphon to understand the effect of this special nanofluid on the thermal performance of the thermosyphon. The experiment was carried out under steady operating pressures. The same work was also explored for traditional nanofluid (consisting of water and the same silica nanoparticles without functionalization) for comparison. Results indicate that a porous deposition layer exists on the heated surface of the evaporator during the operating process using traditional nanofluid; however, no coating layer exists for functionalized nanofluid. Functionalized nanofluid can enhance the evaporating heat transfer coefficient, while it has generally no effect on the maximum heat flux. Traditional nanofluid deteriorates the evaporating heat transfer coefficient but enhances the maximum heat flux. The existence of the deposition layer affects mainly the thermal performance, and no meaningful nanofluid effect is found in the present study

    Targeted inhibition of mitochondrial Hsp90 suppresses localised and metastatic prostate cancer growth in a genetic mouse model of disease

    Get PDF
    BACKGROUND: The molecular chaperone heat shock protein-90 (Hsp90) is a promising cancer drug target, but current Hsp90-based therapy has so far shown limited activity in the clinic. METHODS: We tested the efficacy of a novel mitochondrial-targeted, small-molecule Hsp90 inhibitor, Gamitrinib (GA mitochondrial matrix inhibitor), in the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model. The TRAMP mice receiving 3-week or 5-week systemic treatment with Gamitrinib were evaluated for localised or metastatic prostate cancer, prostatic intraepithelial neoplasia (PIN) or localised inflammation using magnetic resonance imaging, histology and immunohistochemistry. Treatment safety was assessed histologically in organs collected at the end of treatment. The effect of Gamitrinib on mitochondrial dysfunction was studied in RM1 cells isolated from TRAMP tumours. RESULTS: Systemic administration of Gamitrinib to TRAMP mice inhibited the formation of localised prostate tumours of neuroendocrine or adenocarcinoma origin, as well as metastatic prostate cancer to abdominal lymph nodes and liver. The Gamitrinib treatment had no effect on PIN or prostatic inflammation, and caused no significant animal weight loss or organ toxicity. Mechanistically, Gamitrinib triggered acute mitochondrial dysfunction in RM1 cells, with loss of organelle inner membrane potential and release of cytochrome-c in the cytosol. CONCLUSIONS: The Gamitrinib has pre-clinical activity and favourable tolerability in a genetic model of localised and metastatic prostate cancer in immunocompetent mice. Selective targeting of mitochondrial Hsp90 could provide novel molecular therapy for patients with advanced prostate cancer

    Lower trunk motion and speed-dependence during walking

    Get PDF
    Abstract Background There is a limited understanding about how gait speed influences the control of upper body motion during walking. Therefore, the primary purpose of this study was to examine how gait speed influences healthy individual's lower trunk motion during overground walking. The secondary purpose was to assess if Principal Component Analysis (PCA) can be used to gain further insight into postural responses that occur at different walking speeds. Methods Thirteen healthy subjects (23 Β± 3 years) performed 5 straight-line walking trials at self selected slow, preferred, and fast walking speeds. Accelerations of the lower trunk were measured in the anterior-posterior (AP), vertical (VT), and mediolateral (ML) directions using a triaxial accelerometer. Stride-to-stride acceleration amplitude, regularity and repeatability were examined with RMS acceleration, Approximate Entropy and Coefficient of Multiple determination respectively. Coupling between acceleration directions were calculated using Cross Approximate Entropy. PCA was used to reveal the dimensionality of trunk accelerations during walking at slow and preferred speeds, and preferred and fast speeds. Results RMS acceleration amplitude increased with gait speed in all directions. ML and VT trunk accelerations had less signal regularity and repeatability during the slow compared to preferred speed. However, stride-to-stride acceleration regularity and repeatability did not differ between the preferred and fast walking speed conditions, partly due to an increase in coupling between frontal plane accelerations. The percentage of variance accounted for by each trunk acceleration Principal Component (PC) did not differ between grouped slow and preferred, and preferred and fast walking speed acceleration data. Conclusion The main finding of this study was that walking at speeds slower than preferred primarily alters lower trunk accelerations in the frontal plane. Despite greater amplitudes of trunk acceleration at fast speeds, the lack of regularity and repeatability differences between preferred and fast speeds suggest that features of trunk motion are preserved between the same conditions. While PCA indicated that features of trunk motion are preserved between slow and preferred, and preferred and fast speeds, the discriminatory ability of PCA to detect speed-dependent differences in walking patterns is limited compared to measures of signal regularity, repeatability, and coupling.</p
    • …
    corecore