59,770 research outputs found
Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks
We have calculated the evolution of cosmic ray (CR) modified astrophysical
shocks for a wide range of shock Mach numbers and shock speeds through
numerical simulations of diffusive shock acceleration (DSA) in 1D quasi-
parallel plane shocks. The simulations include thermal leakage injection of
seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion
is assumed. We model shocks similar to those expected around cosmic structure
pancakes as well as other accretion shocks driven by flows with upstream gas
temperatures in the range K and shock Mach numbers spanning
. We show that CR modified shocks evolve to time-asymptotic states
by the time injected particles are accelerated to moderately relativistic
energies (p/mc \gsim 1), and that two shocks with the same Mach number, but
with different shock speeds, evolve qualitatively similarly when the results
are presented in terms of a characteristic diffusion length and diffusion time.
For these models the time asymptotic value for the CR acceleration efficiency
is controlled mainly by shock Mach number. The modeled high Mach number shocks
all evolve towards efficiencies %, regardless of the upstream CR
pressure. On the other hand, the upstream CR pressure increases the overall CR
energy in moderate strength shocks (). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10,
2005
Schottky barrier and contact resistance of InSb nanowire field effect transistors
Understanding of the electrical contact properties of semiconductor nanowire
(NW) field effect transistors (FETs) plays a crucial role in employing
semiconducting NWs as building blocks for future nanoelectronic devices and in
the study of fundamental physics problems. Here, we report on a study of the
contact properties of Ti/Au, a widely used contact metal combination, to
individual InSb NWs via both two-probe and four-probe transport measurements.
We show that a Schottky barrier of height is
present at the metal-InSb NW interfaces and its effective height is gate
tunable. The contact resistance () in the InSb NWFETs is also
analyzed by magnetotransport measurements at low temperatures. It is found that
at on-state exhibits a pronounced magnetic field dependent
feature, namely it is increased strongly with increasing magnetic field after
an onset field . A qualitative picture that takes into account
magnetic depopulation of subbands in the NWs is provided to explain the
observation. Our results provide a solid experimental evidence for the presence
of a Schottky barrier at Ti/Au-InSb NW interfaces and can be used as a basis
for design and fabrication of novel InSb NW based nanoelectronic devices and
quantum devices.Comment: 12 pages, 4 figure
Asymptotic behavior of A + B --> inert for particles with a drift
We consider the asymptotic behavior of the (one dimensional) two-species
annihilation reaction A + B --> 0, where both species have a uniform drift in
the same direction and like species have a hard core exclusion. Extensive
numerical simulations show that starting with an initially random distribution
of A's and B's at equal concentration the density decays like t^{-1/3} for long
times. This process is thus in a different universality class from the cases
without drift or with drift in different directions for the different species.Comment: LaTeX, 6pp including 3 figures in LaTeX picture mod
Spatial Organization in the Reaction A + B --> inert for Particles with a Drift
We describe the spatial structure of particles in the (one dimensional)
two-species annihilation reaction A + B --> 0, where both species have a
uniform drift in the same direction and like species have a hard core
exclusion. For the case of equal initial concentration, at long times, there
are three relevant length scales: the typical distance between similar
(neighboring) particles, the typical distance between dissimilar (neighboring)
particles, and the typical size of a cluster of one type of particles. These
length scales are found to be generically different than that found for
particles without a drift.Comment: 10 pp of gzipped uuencoded postscrip
Recommended from our members
Optimizing human pulmonary perfusion measurement using an in silico model of arterial spin labeling magnetic resonance imaging.
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is an imaging methodology that uses blood as an endogenous contrast agent to quantify flow. One limitation of this method of capillary blood quantification when applied in the lung is the contribution of signals from non-capillary blood. Intensity thresholding is one approach that has been proposed for minimizing the non-capillary blood signal. This method has been tested in previous in silico modeling studies; however, it has only been tested under a restricted set of physiological conditions (supine posture and a cardiac output of 5 L/min). This study presents an in silico approach that extends previous intensity thresholding analysis to estimate the optimal "per-slice" intensity threshold value using the individual components of the simulated ASL signal (signal arising independently from capillary blood as well as pulmonary arterial and pulmonary venous blood). The aim of this study was to assess whether the threshold value should vary with slice location, posture, or cardiac output. We applied an in silico modeling approach to predict the blood flow distribution and the corresponding ASL quantification of pulmonary perfusion in multiple sagittal imaging slices. There was a significant increase in ASL signal and heterogeneity (COV = 0.90 to COV = 1.65) of ASL signals when slice location changed from lateral to medial. Heterogeneity of the ASL signal within a slice was significantly lower (P = 0.03) in prone (COV = 1.08) compared to in the supine posture (COV = 1.17). Increasing stroke volume resulted in an increase in ASL signal and conversely an increase in heart rate resulted in a decrease in ASL signal. However, when cardiac output was increased via an increase in both stroke volume and heart rate, ASL signal remained relatively constant. Despite these differences, we conclude that a threshold value of 35% provides optimal removal of large vessel signal independent of slice location, posture, and cardiac output
An alternative formulation of classical electromagnetic duality
By introducing a doublet of electromagnetic four dimensional vector
potentials, we set up a manifestly Lorentz covariant and SO(2) duality
invariant classical field theory of electric and magnetic charges. In our
formulation one does not need to introduce the concept of Dirac string.Comment: 14 pages, no figures, Latex, minor corrections, references and
acknowledgements adde
- …