1,575 research outputs found

    When Should a School Close? Questioning Criteria and Analyzing Stakeholder Perspectives

    Get PDF

    Prophylaxis of heterotopic ossification – an updated review

    Get PDF
    Heterotopic ossification (HO) is defined as the process by which trabecular bone forms outside of the skeletal structure, occupying space in soft tissue where it does not normally exist. The current popular prophylactic treatment modalities include non-steroidal anti-inflammatory drugs (NSAIDs) and radiation therapy, although the literature remains inconclusive as to which is superior. Additionally, both treatments can lead to adverse effects to the patient. Recently there have been several studies attempting to identify new aspects of the etiology of heterotopic bone formation and introduce new prophylactic modalities with increased efficacy and fewer side effects. For this review, we selectively retrieved articles from Medline published from 1958–2008 on the prophylaxis of HO with the aim of assisting readers in quickly grasping the current status of research and clinical aspects of HO prophylaxis

    Soliton cellular automaton associated with G2(1)G_2^{(1)} crystal base

    Full text link
    We calculate the combinatorial RR matrix for all elements of BlβŠ—B1\mathcal{B}_l\otimes \mathcal{B}_1 where Bl\mathcal{B}_l denotes the G2(1)G_2^{(1)}-perfect crystal of level ll, and then study the soliton cellular automaton constructed from it. The solitons of length ll are identified with elements of the A1(1)A_1^{(1)}-crystal B~3l\tilde{\mathcal{B}}_{3l}. The scattering rule for our soliton cellular automaton is identified with the combinatorial RR matrix for A1(1)A_1^{(1)}-crystals

    Role of wnts in prostate cancer bone metastases

    Full text link
    Prostate cancer (CaP) is unique among all cancers in that when it metastasizes to bone, it typically forms osteoblastic lesions (characterized by increased bone production). CaP cells produce many factors, including Wnts that are implicated in tumor-induced osteoblastic activity. In this prospectus, we describe our research on Wnt and the CaP bone phenotype. Wnts are cysteine-rich glycoproteins that mediate bone development in the embryo and promote bone production in the adult. Wnts have been shown to have autocrine tumor effects, such as enhancing proliferation and protecting against apoptosis. In addition, we have recently identified that CaP-produced Wnts act in a paracrine fashion to induce osteoblastic activity in CaP bone metastases. In addition to Wnts, CaP cells express the soluble Wnt inhibitor dickkopf-1 (DKK-1). It appears that DKK-1 production occurs early in the development of skeletal metastases, which results in masking of osteogenic Wnts, thus favoring osteolysis at the metastatic site. As metastases progress, DKK-1 expression decreases allowing for unmasking of Wnt's osteoblastic activity and ultimately resulting in osteosclerosis at the metastatic site. We believe that DKK-1 is one of the switches that transitions the CaP bone metastasis activity from osteolytic to osteoblastic. Wnt/DKK-1 activity fits a model of CaP-induced bone remodeling occurring in a continuum composed of an osteolytic phase, mediated by receptor activator of NFkB ligand (RANKL), parathyroid hormone-related protein (PTHRP) and DKK-1; a transitional phase, where environmental alterations promote expression of osteoblastic factors (Wnts) and decreases osteolytic factors (i.e., DKK-1); and an osteoblastic phase, in which tumor growth-associated hypoxia results in production of vascular endothelial growth factor and endothelin-1, which have osteoblastic activity. This model suggests that targeting both osteolytic activity and osteoblastic activity will provide efficacy for therapy of CaP bone metastases. J. Cell. Biochem. 97: 661–672, 2006. Β© 2005 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49527/1/20735_ftp.pd

    Regulation of Early Adipose Commitment by Zfp521

    Get PDF
    While there has been significant progress in determining the transcriptional cascade involved in terminal adipocyte differentiation, less is known about early events leading to lineage commitment and cell fate choice. It has been recently discovered that zinc finger protein 423 (Zfp423) is an early actor in adipose determination. Here, we show that a close paralog of Zfp423, Zfp521, acts as a key regulator of adipose commitment and differentiation in vitro and in vivo. Zfp521 exerts its actions by binding to early B cell factor 1 (Ebf1), a transcription factor required for the generation of adipocyte progenitors, and inhibiting the expression of Zfp423. Overexpression of Zfp521 in cells greatly inhibits adipogenic potential, whereas RNAi-mediated knock-down or genetic ablation of Zfp521 enhances differentiation. In addition, Zfp521βˆ’/βˆ’Zfp521^{βˆ’/βˆ’} embryos exhibit increased mass of interscapular brown adipose tissue and subcutaneous white adipocytes, a cell autonomous effect. Finally, Ebf1 participates in a negative feedback loop to repress Zfp521 as differentiation proceeds. Because Zfp521 is known to promote bone development, our results suggest that it acts as a critical switch in the commitment decision between the adipogenic and osteogenic lineages
    • …
    corecore