49,485 research outputs found

    Nuclear Modification to Parton Distribution Functions and Parton Saturation

    Full text link
    We introduce a generalized definition of parton distribution functions (PDFs) for a more consistent all-order treatment of power corrections. We present a new set of modified DGLAP evolution equations for nuclear PDFs, and show that the resummed αsA1/3/Q2\alpha_s A^{1/3}/Q^2-type of leading nuclear size enhanced power corrections significantly slow down the growth of gluon density at small-xx. We discuss the relation between the calculated power corrections and the saturation phenomena.Comment: 4 pages, to appear in the proceedings of QM200

    Quark fragmentation in the θ\theta-vacuum

    Full text link
    The vacuum of Quantum Chromodynamics is a superposition of degenerate states with different topological numbers that are connected by tunneling (the θ\theta-vacuum). The tunneling events are due to topologically non-trivial configurations of gauge fields (e.g. the instantons) that induce local \p-odd domains in Minkowski space-time. We study the quark fragmentation in this topologically non-trivial QCD background. We find that even though QCD globally conserves \p and \cp symmetries, two new kinds of \p-odd fragmentation functions emerge. They generate interesting dihadron correlations: one is the azimuthal angle correlation cos(ϕ1+ϕ2)\sim \cos(\phi_1 + \phi_2) usually referred to as the Collins effect, and the other is the \p-odd correlation sin(ϕ1+ϕ2)\sim \sin(\phi_1 + \phi_2) that vanishes in the cross section summed over many events, but survives on the event-by-event basis. Using the chiral quark model we estimate the magnitude of these new fragmentation functions. We study their experimental manifestations in dihadron production in e+ee^+e^- collisions, and comment on the applicability of our approach in deep-inelastic scattering, proton-proton and heavy ion collisions.Comment: 4 pages, 2 figure

    Amorphous metallizations for high-temperature semiconductor device applications

    Get PDF
    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C

    Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks

    Full text link
    We have calculated the evolution of cosmic ray (CR) modified astrophysical shocks for a wide range of shock Mach numbers and shock speeds through numerical simulations of diffusive shock acceleration (DSA) in 1D quasi- parallel plane shocks. The simulations include thermal leakage injection of seed CRs, as well as pre-existing, upstream CR populations. Bohm-like diffusion is assumed. We model shocks similar to those expected around cosmic structure pancakes as well as other accretion shocks driven by flows with upstream gas temperatures in the range T0=104107.6T_0=10^4-10^{7.6}K and shock Mach numbers spanning Ms=2.4133M_s=2.4-133. We show that CR modified shocks evolve to time-asymptotic states by the time injected particles are accelerated to moderately relativistic energies (p/mc \gsim 1), and that two shocks with the same Mach number, but with different shock speeds, evolve qualitatively similarly when the results are presented in terms of a characteristic diffusion length and diffusion time. For these models the time asymptotic value for the CR acceleration efficiency is controlled mainly by shock Mach number. The modeled high Mach number shocks all evolve towards efficiencies 50\sim 50%, regardless of the upstream CR pressure. On the other hand, the upstream CR pressure increases the overall CR energy in moderate strength shocks (MsafewM_s \sim {\rm a few}). (abridged)Comment: 23 pages, 12 ps figures, accepted for Astrophysical Journal (Feb. 10, 2005

    NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo.

    Get PDF
    NLRs (nucleotide-binding domain [NBD] leucine-rich repeat [LRR]-containing proteins) exhibit diverse functions in innate and adaptive immunity. NAIPs (NLR family, apoptosis inhibitory proteins) are NLRs that appear to function as cytosolic immunoreceptors for specific bacterial proteins, including flagellin and the inner rod and needle proteins of bacterial type III secretion systems (T3SSs). Despite strong biochemical evidence implicating NAIPs in specific detection of bacterial ligands, genetic evidence has been lacking. Here we report the use of CRISPR/Cas9 to generate Naip1(-/-) and Naip2(-/-) mice, as well as Naip1-6(Δ/Δ) mice lacking all functional Naip genes. By challenging Naip1(-/-) or Naip2(-/-) mice with specific bacterial ligands in vivo, we demonstrate that Naip1 is uniquely required to detect T3SS needle protein and Naip2 is uniquely required to detect T3SS inner rod protein, but neither Naip1 nor Naip2 is required for detection of flagellin. Previously generated Naip5(-/-) mice retain some residual responsiveness to flagellin in vivo, whereas Naip1-6(Δ/Δ) mice fail to respond to cytosolic flagellin, consistent with previous biochemical data implicating NAIP6 in flagellin detection. Our results provide genetic evidence that specific NAIP proteins function to detect specific bacterial proteins in vivo
    corecore