25 research outputs found

    On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: implications for the tectonic evolution of the Himalayan orogen

    Get PDF
    The Himalayan orogen, resulting from the Early Cenozoic collision of the Indian and Asian plates, is an ideal vehicle to study active orogenic processes and test geodynamic models of how the crust responds to collisional orogeny. This paper focused on migmatitic high-pressure (HP) mafic granulite and associated leucosome from the Greater Himalayan Crystallines (GHC) in the Eastern Himalayan Syntaxis (EHS) in order to understand the conditions and timescales over which high-grade rocks and partial melts were produced during the Himalayan orogeny. Combining with previous study results from the Western and Central Himalayas and Trans-Himalayan magmatic arc, we obtained the following conclusions: (1) The mafic granulites from the EHS underwent HP and high-temperature (HT) granulite facies metamorphism and partial melting, with peak metamorphic conditions of 15–17 kbar and 820–880 °C. The GHC, at least its western part of the EHS, underwent coherent HP granulite-facies metamorphism. (2) The HP mafic granulites experienced long-lived dehydration melting of amphibole from ~40 Ma to ~20 Ma during prograde metamorphism and generated up to ~16 vol% partial melt. The variable degrees of dehydration melting of the HP mafic, pelitic and felsic granulites in the EHS generated voluminous granitic melts with distinct compositions, and provided the source for the Himalayan granites. (3) Peak metamorphic pressure of the GHC gradually decreases, whereas the metamorphic temperature progressively increases from the Western to Eastern Himalayas. This indicates that the Indian continental crust deeply subducted into the mantle in the Western Himalaya after the Indo-Asia collision, whereas the Indian crust underthrusted or relaminated beneath the Asian continental crust, and formed the thickened lower crust in the Central and Eastern Himalayas and Gangdese arc. (4) The melts derived from the underthrusted Indian crust probably resulted in isotopic compositional enrichment of the Early Cenozoic mantle- and juvenile crust-derived magmatic rocks of the Gangdese arc

    The IPIN 2019 Indoor Localisation Competition—Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Traceability of River Water Pollution Based on MFO and M-H Algorithms

    Get PDF
    The work proposed a novel model to accurately trace the pollution sources of water pollution incidents based on moth-flame optimization and Metropolis-Hastings sampling algorithms. The model first utilized moth-flame optimization to estimate the parameters of the pollutant migration-diffusion model by minimizing the error between monitored and predicted concentration. It then traced the optimal pollution source location, discharge volume, and time using the M-H sampling algorithm. Simulation experiments demonstrated the model achieved significantly lower errors in tracing pollution source information compared to a previous method, with relative errors within 1.33%. The new model provides an accurate and efficient approach to tracing water pollution incidents and overcomes the limitations of previous methods. It exhibits substantial potential in identifying pollution sources within real-world aquatic environments as well as facilitating prompt responses to mitigate environmental and health impacts

    In Vitro Antiviral Activity of Rubia Cordifolia Aerial Part Extract Against Rotavirus

    Get PDF
    The root of Rubia cordifolia (R. cordifolia) has been used traditionally as a hemostatic agent, while the aerial part of the plant consisting of leaf and stem is known to exhibit anti-diarrheal properties and has been widely used as a remedy in many parts of China. As rotavirus is one of the most commonly associated diarrhea-causing pathogen, this study aims to investigate the anti-rotaviral effect of R. cordifolia aerial part (RCAP). The cytotoxicity of RCAP towards MA-104 cells was evaluated using the WST-8 assay. Colloidal gold method and real time polymerase chain reaction (qPCR) assay were used to confirm the findings of the antiviral assay. Then, 4',6-diamidino-2-phenylindole (DAPI) staining method was subsequently used to investigate the mode of death among the cells. And the representative components of aqueous extract were isolated and identified. It was shown that both the viability of MA-104 cells and the viral load were reduced with increasing concentration of the extract. DAPI staining showed that virus-induced apoptosis was the cause of the low cell viability and viral load, an effect which was accelerated with incubation in the aqueous herbal extract. The major compounds postulated to exhibit this activity were isolated from the aqueous herbal extract and identified to be compounds Xanthopurpurin and Vanillic Acid. This study showed that RCAP extract effectively inhibited rotavirus multiplication by promoting virus-induced apoptosis in MA-104 cells
    corecore