9,392 research outputs found

    Monomial Relization of Crystal Bases for Special Linear Lie Algebras

    Get PDF
    We give a new realization of crystal bases for finite dimensional irreducible modules over special linear Lie algebras using the monomials introduced by H. Nakajima. We also discuss the connection between this monomial realization and the tableau realization given by Kashiwara and Nakashima.Comment: 15 page

    Young Wall Realization of Crystal Bases for Classical Lie Algebras

    Get PDF
    In this paper, we give a new realization of crystal bases for finite dimensional irreducible modules over classical Lie algebras. The basis vectors are parameterized by certain Young walls lying between highest weight and lowest weight vectors.Comment: 27page

    Two New Marine Sponges of the Genus Haliclona (Haplosclerida: Chalinidae) from Korea

    Get PDF
    Two new marine sponges, Haliclona (Haliclona) tonggumiensis n. sp. and H. (Reniera) sinyeoensis n. sp., in the family Chalinidae were collected from Ulleungdo Island and Gageodo Island, Korea from 2007 to 2009. Haliclona (Haliclona) tonggumiensis n. sp. is similar to H. (H.) simulans (Johnston, 1842) in shape, but the former differs in its ectosomal skeleton structure and spiculesā€™ shape and size. The ectosomal skeleton of H. (H.) tonggumiensis n. sp. is absent, but that of H. (H.) simulans is very regularly arranged, and has tangential reticulation with oxea. The spicule shape of H. (H.) tonggumiensis n. sp. is slender, but that of H. (H.) simulans is short and cigar-shape. The new species have two sizes of oxea, but H. (H.) simulans has one size of oxea. Haliclona (Reniera) sinyeoensis n. sp. resembles H. (R.) tubifera (George and Wilson, 1919) in the growth form and choanosomal skeleton structure. However, the new species has two kinds of oxea in size, but H. (R.) tubifera has only one size

    Electrochemical Investigation of High-Performance Dye-Sensitized Solar Cells Based on Molybdenum for Preparation of Counter Electrode

    Get PDF
    In order to improve the photocurrent conversion efficiency of dye-sensitized solar cells (DSSCs), we studied an alternative conductor for the counter electrode and focused on molybdenum (Mo) instead of conventional fluorine-doped tin oxide (FTO). Because Mo has a similar work function to FTO for band alignment, better formability of platinum (Pt), and a low electric resistance, using a counter electrode made of Mo instead of FTO lead to the enhancement of the catalytic reaction of the redox couple, reduce the interior resistance of the DSSCs, and prevent energy-barrier formation. Using electrical measurements under a 1-sun condition (100 mW/cm(2), AM 1.5), we determined that the fill factor (FF) and photocurrent conversion efficiency (eta) of DSSCs with a Mo electrode were respectively improved by 7.75% and 5.59% with respect to those of DSSCs with an FTO electrode. Moreover, we have investigated the origin of the improved performance through surface morphology analyses such as scanning electron microscopy and electrochemical analyses including cyclic voltammetry and impedance spectroscopy
    • ā€¦
    corecore