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YOUNG WALL REALIZATION OF CRYSTAL BASES
FOR CLASSICAL LIE ALGEBRAS

SEOK-JIN KANG, JEONG-AH KIM, HYEONMI LEE, AND DONG-UY SHIN

Abstract. In this paper, we give a new realization of crystal bases for finite-
dimensional irreducible modules over classical Lie algebras. The basis vectors
are parameterized by certain Young walls lying between highest weight and
lowest weight vectors.

Introduction

The classical Lie algebras and their representations have been the fundamen-
tal algebraic structure behind many branches of mathematics and mathematical
physics. Throughout the past 100 years, it has been discovered that the represen-
tation theory of classical Lie algebras has a close connection with the combinatorics
of Young tableaux and symmetric functions. (See, for example, [1], [15].) As can
be found in [9], [16], this connection can be explained in a beautiful manner using
the crystal basis theory for quantum groups, and one can derive many new and
interesting results in combinatorial representation theory.

The quantum groups are deformations of the universal enveloping algebras of
Kac-Moody algebras, and the crystal bases can be viewed as bases at q = 0 for the
integrable modules over quantum groups in the categoryOint. The crystal bases are
given a structure of colored oriented graphs, called the crystal graphs, which reflect
the combinatorial structure of integrable modules in the category Oint. Moreover,
they have many nice combinatorial features; for instance, they have a remarkably
simple behavior with respect to taking the tensor product.

For classical Lie algebras, Kashiwara and Nakashima gave an explicit realization
of crystal bases for finite-dimensional irreducible modules [9]. In their work, crystal
bases were characterized as the sets of semistandard Young tableaux with given
shapes satisfying certain additional conditions. Motivated by their work, Kang and
Misra discovered a Young tableaux realization of crystal bases for finite-dimensional
irreducible modules over the exceptional Lie algebra G2 [5]. In [12], Littelmann
gave another description of crystal bases for finite-dimensional simple Lie algebras
using the Lakshmibai-Seshadri monomial theory. His approach was generalized (by
himself) to the path model theory for all symmetrizable Kac-Moody algebras [13],
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[14]. Littelmann’s theory also gives rise to colored oriented graphs, which turned
out to be isomorphic to the crystal graphs [8].

In this paper, we give a new realization of crystal bases for finite-dimensional
irreducible modules over classical Lie algebras. The basis vectors are parameterized
by certain Young walls lying between the highest weight and lowest weight vectors.
The Young walls were introduced in [2] and [3] as a combinatorial scheme for
realizing the crystal bases for quantum affine algebras. They consist of colored
blocks with various shapes built on the given ground-states and can be viewed as
generalization of Young diagrams. The crystal bases for basic representations for
quantum affine algebras are characterized as the sets of reduced proper Young walls
[3].

Let us briefly explain the main idea of our approach. Let g be a classical Lie
algebra lying inside an affine Lie algebra ĝ so that the Dynkin diagram of g can
be obtained by removing the 0-node from the Dynkin diagram of ĝ. Consider the
crystal graph B(Λ) of a basic representation V (Λ) of ĝ consisting of reduced proper
Young walls. If we remove all the 0-arrows in B(Λ), it is decomposed into a disjoint
union of infinitely many connected components, each of which is isomorphic to the
crystal graph B(λ) for a finite-dimensional irreducible g-module V (λ) with highest
weight λ. Conversely, any crystal graph B(λ) for a finite-dimensional irreducible
g-module V (λ) arises in this way. That is, given a dominant integral weight λ for
g, there is a dominant integral weight Λ of level 1 for ĝ such that B(λ) appears as
a connected component in B(Λ) without 0-arrows.

Thus the remaining task is to characterize these connected components in B(Λ).
However, given a dominant integral weight λ for the classical Lie algebra g, there
are infinitely many connected components in B(Λ) that are isomorphic to B(λ).
Among these, we choose the characterization of B(λ) corresponding to the con-
nected components having the least number of blocks.

In [10], from this Young wall realization of crystal bases over classical Lie al-
gebras using affine combinatorial objects, Kim and Shin derived another tableaux
realization, which is different from the one given by Kashiwara and Nakashima.
Moreover, using the result of our work, Lee gave a realization of An-type Demazure
crystals for certain highest weights [11].

1. Quantum groups and Young walls

The basic notions on quantum groups and crystal bases may be found in [2], [6],
[7]. In this section, we mostly explain the basic combinatorics of Young walls which
were introduced in [2], [3].

Let us fix basic notation:

g : Kac-Moody algebra of finite classical type.

Uq(g) : quantum classical algebra.

ĝ : Kac-Moody algebra of affine type.

Uq(ĝ) : quantum affine algebra.
I : index set for simple roots of finite or affine Kac-Moody algebra.

P∨ =
{ ⊕

i∈I Zhi for finite type⊕
i∈I Zhi ⊕ Zd for affine type : dual weight lattice.

αi, δ,Λi : simple root, null root, fundamental weight.
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P = {λ ∈ h∗|λ(P∨) ⊂ Z} : weight lattice.

ẽi, f̃i : Kashiwara operators.

The Young walls are built of colored blocks with three different shapes:

With these colored blocks, we build the walls of thickness less than or equal to 1
unit which extend infinitely to the left. Given a dominant integral weight Λ of level
1 for the affine Lie algebra ĝ, we fix a frame called the ground-state wall of weight
Λ, and build the walls on this frame. For each type of quantum affine algebras, we
use different sets of colored blocks and ground-state walls, whose description can
be found in [2], [3].

The rules for building the walls are given as follows:

(1) The walls must be built on top of the ground-state wall.
(2) The colored blocks should be stacked in the patterns given in [2], [3].
(3) No block can be placed on top of a column of half-unit thickness.
(4) Except for the right-most column, there should be no free space to the right

of any block.

By (4), the heights of the columns are weakly decreasing as we go from right to
left. For this reason, the walls built by the above rules will be called the Young
walls.

In the following example, for the affine Lie algebra B(1)
n , we will illustrate the

colored blocks, the ground-state wall, and the pattern for building the walls. For
convenience, we will use the following notation:

Example 1.1. The walls for the affine Lie algebra B(1)
n are built of the following

data:
(a) Colored blocks:

(b) The ground-state wall of weight Λ0:
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(c) The pattern for building the walls on YΛ0 :

Definition 1.2. Let Λ be a dominant integral weight of level 1 for the affine Lie
algebra ĝ.

(a) A column in a Young wall is called a full column if its height is a multiple of
the unit length and its top is of unit thickness.

(b) For the classical quantum affine algebras of type A(2)
2n−1 (n ≥ 3), D(1)

n (n ≥ 4),
A

(2)
2n (n ≥ 2), D(2)

n+1 (n ≥ 2) and B
(1)
n (n ≥ 3), a Young wall is said to be proper if

none of the full columns have the same height.
(c) For the quantum affine algebras of type A(1)

n (n ≥ 1), every Young wall is
defined to be proper.

Let δ be the null root for the quantum affine algebra Uq(ĝ) and write{
δ = a0α0 + a1α1 + · · ·+ anαn for ĝ = A

(1)
n , · · · , B(1)

n ,

2δ = a0α0 + a1α1 + · · ·+ anαn for ĝ = D
(2)
n+1.

The part of a column consisting of a0-many 0-blocks, a1-many 1-blocks, · · · , an-
many n-blocks in some cyclic order is called a δ-column.

Definition 1.3. (a) A column in a proper Young wall is said to contain a removable
δ if we can remove a δ-column from Y and still obtain a proper Young wall.

(b) A proper Young wall is said to be reduced if none of its columns contain a
removable δ.

Let F(Λ) be the set of all proper Young walls and let Y(Λ) denote the set of
all reduced proper Young walls. Then we can define a crystal structure on F(Λ)
so that it may become a crystal graph for some integrable Uq(ĝ)-module in the
category Oint [3], [4]. In this case, the set Y(Λ) becomes a connected component
in the crystal graph F(Λ) and is isomorphic to the crystal graph B(Λ) for the basic
representation V (Λ) of the quantum affine algebra Uq(ĝ). We briefly explain the
crystal structure of F(Λ). The main point is how to define the action of Kashiwara
operators ẽi and f̃i (i = 0, 1, · · · , n) on proper Young walls.

Definition 1.4. (a) A block of color i in a proper Young wall is called a removable
i-block if the wall remains a proper Young wall after removing the block. A column
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in a proper Young wall is called i-removable if the top of that column is a removable
i-block.

(b) A place in a proper Young wall where one may add an i-block to obtain
another proper Young wall is called an admissible i-slot. A column in a proper
Young wall is called i-admissible if the top of that column is an admissible i-slot.

Fix i ∈ I and let Y = (yk)∞k=0 ∈ F(Λ) be a proper Young wall.
(1) To each column yk of Y , we assign its i-signature as follows:

(a) we assign −− if the column yk is twice i-removable; (the i-block will
be of half-unit height in this case).

(b) we assign − if the column is once i-removable, but not i-admissible
(the i-block may be of unit height or of half-unit height);

(c) we assign −+ if the column is once i-removable and once i-admissible
(the i-block will be of half-unit height in this case);

(d) we assign + if the column is once i-admissible, but not i-removable
(the i-block may be of unit height or of half-unit height);

(e) we assign + + if the column is twice i-admissible (the i-block will be
of half-unit height in this case).

(2) From the (infinite) sequence of +’s and −’s, cancel out every (+,−)-pair to
obtain a finite sequence of −’s followed by +’s, reading from left to right.
This sequence is called the i-signature of the proper Young wall Y .

(3) We define ẽiY to be the proper Young wall obtained from Y by removing
the i-block corresponding to the right-most − in the i-signature of Y . We
define ẽiY = 0 if there exists no − in the i-signature of Y .

(4) We define f̃iY to be the proper Young wall obtained from Y by adding an
i-block to the column corresponding to the left-most + in the i-signature
of Y . We define f̃iY = 0 if there exists no + in the i-signature of Y .

Then we have:

Theorem 1.5 ([3], [4]). (a) The set F(Λ) together with the Kashiwara operators
defined as above becomes a crystal graph for an integrable Uq(ĝ)-module in the
category Oint.

(b) For all i ∈ I and Y ∈ Y(Λ), we have

ẽiY ∈ Y(Λ) ∪ {0} and f̃iY ∈ Y(Λ) ∪ {0}.
Moreover, there exists a crystal isomorphism

Y(Λ) ∼−→ B(Λ) given by YΛ 7−→ uΛ,

where uΛ is the highest weight vector in B(Λ).

2. Realization of crystal bases

In this section, we will state the main result of this paper – a new realization of
crystal bases for finite-dimensional irreducible modules over classical Lie algebras.

Let us explain the main idea of our approach. Let g be a classical Lie algebra
lying inside an affine Lie algebra ĝ so that the Dynkin diagram of g can be obtained
by removing the 0-node from the Dynkin diagram of ĝ. In this paper, we will focus
on the following pairs of a classical Lie algebra and an affine Lie algebra:

An ⊂ A(1)
n , Cn ⊂ A(2)

2n−1, Bn ⊂ B(1)
n , Dn ⊂ D(1)

n .
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Fix such a pair g ⊂ ĝ and let Λ be a dominant integral weight of level 1 for the
affine Lie algebra ĝ. Then by Theorem 1.5, the crystal graph B(Λ) is realized as
the set Y(Λ) of all reduced proper Young walls built on the ground-state wall YΛ.
If we remove all the 0-arrows in Y(Λ), then it is decomposed into a disjoint union
of infinitely many connected components, each of which is isomorphic to the crystal
graph B(λ) for some dominant integral weight λ for g.

Conversely, any crystal graph B(λ) for g arises in this way. That is, given a
dominant integral weight λ for g, there is a dominant integral weight Λ of level
1 for ĝ such that B(λ) appears as a connected component in B(Λ) without 0-
arrows. More precisely, we denote by λi (i = 1, · · · , n) and Λi (i = 0, 1, · · · , n) the
fundamental weights for the quantum classical Lie algebras and the quantum affine
algebras, respectively, and define the linear functionals ωi by

1) g = An, Cn:

ωi = λi for i = 1, · · · , n,
2) g = Bn:

ωi =

{
λi for i = 1, · · · , n− 1,
2λn for i = n,

3) g = Dn:

ωi =


λi for i = 1, · · · , n− 2,
λn−1 + λn for i = n− 1,
2λn for i = n,

2λn−1 for i = n+ 1.

Then for each dominant integral weight λ for g, we may take the level 1 dominant
integral weight Λ for ĝ as follows:

1) An ⊂ A(1)
n

λ = a1ω1 + · · ·+ anωn,

Λ = Λi if a1 + 2a2 + · · ·+ nan ≡ i mod n+ 1,

2) Cn ⊂ A(2)
2n−1

λ = a1ω1 + · · ·+ anωn,

Λ =

{
Λ0 if a1 + 2a2 + · · ·+ nan is odd,
Λ1 if a1 + 2a2 + · · ·+ nan is even,

3) Bn ⊂ B(1)
n

λ = a1ω1 + · · ·+ anωn + bλn,

Λ =


Λ0 if b = 0 and a1 + 2a2 + · · ·+ nan is odd,
Λ1 if b = 0 and a1 + 2a2 + · · ·+ nan is even,
Λn if b = 1,

4) Dn ⊂ D(1)
n

λ = a1ω1 + · · ·+ an+1ωn+1 + b1λn−1 + b2λn,
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Λ =


Λ0 if b1 = b2 = 0 and a1 + 2a2 + · · ·+ nan + nan+1 is odd,
Λ1 if b1 = b2 = 0 and a1 + 2a2 + · · ·+ nan + nan+1 is even,
Λn−1 if b1 = 1 and b2 = 0,
Λn if b1 = 0 and b2 = 1.

Now, we need to identify the highest weight vector uλ for B(λ) with some re-
duced proper Young wall in Y(Λ) which is annihilated by all ẽi for i = 1, · · · , n.
However, given a dominant integral weight λ for g, there are infinitely many such
Young walls in Y(Λ). Equivalently, given λ, there are infinitely many connected
components of Y(Λ) without 0-arrows that are isomorphic to B(λ). Thus the main
task is to characterize these connected components. Among these, we choose the
characterization of B(λ) corresponding to the connected components having the
least number of blocks.

Given a dominant integral weight λ for g, we describe an algorithm for construct-
ing the highest weight vector Hλ and lowest weight vector Lλ inside Y(Λ). For
our convenience, we will focus on the case of g = Bn because this case contains all
the characteristics of the remaining cases. If λ = ωi (i = 1, · · · , n), let Hωi denote
the Young wall (see Figure 1). Then it is easy to verify that ẽjHωi = 0 for all
j = 1, · · · , n. That is, Hωi is a highest weight vector of weight ωi. For the lowest
weight vector, we denote by Lωi the Young wall given in Figure 2.

Figure 1.

Figure 2.
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Figure 3.

Here, Hωi is denoted by the dark and bold-faced lines. Note that f̃jLωi = 0 for
all j = 1, · · · , n. Thus Lωi is a lowest weight vector of weight −ωi. In Theorem 2.3,
Theorem 2.8, Theorem 2.9 and Theorem 2.16, we will show that Lωi is in fact the
lowest weight vector for the crystal graph B(ωi); i.e., Lωi and Hωi are connected
by Kashiwara operators.

If λ = λn, then the highest weight vector Hλn and the lowest weight vector Lλn
for B(λn) are given by

and

.

Here, Hλn is denoted by the dark and bold-faced lines.
Suppose λ has the form λ = ωi1 + · · · + ωit (1 ≤ i1 ≤ · · · ≤ it ≤ n). For each

k = 1, · · · , t, let Hωik
(resp. Lωik ) denote the Young wall consisting of Hωik

(resp.
Lωik ) and ik× (t− k)-many δ-columns. Here, we place Hωik

(resp. Lωik ) on top of
δ-columns as is shown in Figure 3.

We define Hλ (resp. Lλ) to be the Young wall obtained by attaching Hωik+1

(resp. Lωik+1
) to the left-hand side of Hωik

(resp. Lωik ) for k = 1, · · · , t− 1.
On the other hand, suppose λ has the form λ = ωi1 + · · ·+ ωit + λn (1 ≤ i1 ≤

· · · ≤ it ≤ n). For each k = 1, · · · , t, let Hωik
(resp. Lωik ) denote the Young wall

consisting of Hωik
(resp. Lωik ) and ik× (t− k+ 1

2 )-many δ-columns (see Figure 4).

We define Hλ (resp. Lλ) to be the Young wall obtained by attaching Hωik+1

(resp. Lωik+1
) to the left-hand side of Hωik

(resp. Lωik ) and Hλn (resp. Lλn) to
the left-hand side of Hωit

(resp. Lωit ).
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Figure 4.

Example 2.1. In this example, we will give descriptions of Hλ and Lλ for various
choices of dominant integral weights λ for g = B3. The highest weight vector Hλ

will be denoted by the dark, bold-faced lines and the lowest weight vector Lλ will
be denoted by the bright, dotted lines.

(a) If λ = ω1, we choose Λ = Λ1 and if λ = ω2, we choose Λ = Λ0. The vectors
Hλ and Lλ are given by:

(b) If λ = ω3, we choose Λ = Λ1, and if λ = ω1 + ω3, we choose Λ = Λ0. The
vectors Hλ and Lλ are given by:
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(c) If λ = ω1 + λ3 or ω2 + λ3, we choose Λ = Λ3. The vectors Hλ and Lλ are
given by:

We now begin to characterize the crystal graph B(λ) inside Y(Λ). Let F (λ)
denote the set of all reduced proper Young walls lying between Hλ and Lλ. To
describe B(λ) inside F (λ), we need some additional conditions. For this purpose,
we need to introduce some notation. Fix a dominant integral weight λ as follows:

(2.1) λ =


ωi1 + · · ·+ ωit if g = An, Cn,
ωi1 + · · ·+ ωit + bλn if g = Bn,
ωi1 + · · ·+ ωit + b1λn−1 + b2λn if g = Dn,

where b = 0 or 1, (b1, b2) = (1, 0) or (0, 1).

For each Y ∈ F (λ), we denote by
◦
Y ωik (k = 1, · · · , t) (resp.

◦
Y λn−1 ,

◦
Y λn) the

part of Y consisting of the blocks lying above Hωik
(resp. Hλn−1 , Hλn) and we

denote by Y ωik (resp. Y λn−1 , Y λn) the intersection of Y and Lωik (resp. Lλn−1 ,
Lλn) as is shown in Figure 5. Moreover, we denote by Y ωik+ωik+1

(resp. Y ωit+λn−1 ,
Y ωit+λn) the union of Y ωik (resp. Y ωit ) and Y ωik+1

(resp. Y λn−1 or Y λn).

Figure 5.

Now, consider Y ωik+ωik+1
, Y ωit+λn−1 and Y ωit+λn of Y . Then we define

Y ωik =
◦
Y ωik ∩ Lωik+1

reading from top to bottom,

Y ωik+1 =
◦
Y ωik+1

∩ Lωik reading from right to left in Y ωik+ωik+1
.

(2.2)
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Similarly, we define

Y ωit =
◦
Y ωit ∩ Lλn−1 , Y λn−1 =

◦
Y λn−1 ∩ Lωit in Y ωit+λn−1 ,

Y ωit =
◦
Y ωit ∩ Lλn , Y λn =

◦
Y λn ∩ Lωit in Y ωit+λn .

(2.3)

Example 2.2. If g = A4, λ = ω2 + ω3, and

then we have

Moreover, we have

With this notation, we are ready to give an explicit description of the crystal
graph B(λ) over g = An.

Theorem 2.3. Let λ ∈ P+ be a dominant integral weight and write

λ = ωi1 + · · ·+ ωit (1 ≤ i1 ≤ · · · ≤ it ≤ n).

Set

Y (λ) = {Y ∈ F (λ) |Y ωik ⊂ Y ωik+1 in Y ωik+ωik+1
for all k = 1, 2, · · · , t− 1}.

Then there exists an isomorphism of Uq(An)-crystals

(2.4) Y (λ) ∼−→ B(λ) given by Hλ 7−→ uλ,

where uλ is the highest weight vector in B(λ).

Example 2.4. Let g = A4 and λ = ω2 + ω3. For each Young wall given in Figure
6, the shaded part represents Y ω2 and Y ω3 , respectively. Hence, by Theorem 2.3,
the first Young wall belongs to Y (λ), but the second one does not.

Next, we will consider the case when g = Cn or Bn. Consider Y ωik for k =
1, · · · , t. Suppose that Y ωik contains a row consisting of n-blocks, which will be
called the n-row, as is shown in Figure 7.
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Figure 6.

Figure 7.

We will denote by Y +
ωik

(resp. Y −ωik ) the part of Y consisting of the blocks lying
above (resp. below) the n-row and below Lωik (resp. above Hωik

). We also denote
by |Y −ωik | the wall obtained by reflecting Y −ωik along the n-row and shifting the blocks
to the right as much as possible.

Example 2.5. If g = C4, λ = ω4, and

then we have

Now, consider Lωik+ωik+1
(k = 1, · · · , t − 1) and Lωit+λn (see Figure 8). As

we can see, Lωik+ωik+1
and Lωit+λn contain two n-rows above Hωik+ωik+1

. Note
that there are i-many blocks in the upper n-row. Let us denote by bL (resp. bR)
the left-most (resp. right-most) block in the upper n-row. Then the blocks bL, bR
and the block b lying in the (i− 1)-th row below bL form a right isosceles triangle.
We denote by L−(ωik ,ωik+1) (resp. L−(ωit ,λn)) the part of Lωik+ωik+1

(resp. Lωit+λn)
constituting this right isosceles triangle.
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Figure 8.

Similarly, let b′R be the right-most block in the lower n-row outside the highest
weight vector Hωik+ωik+1

and Hωit+λn
and let b′L be the n-block lying in the (i−1)-

th column to the left of b′R. Then b′R, b′L and the block b′ lying in the (i − 1)-th
row above b′R form another right isosceles triangle. We denote by L+

(ωik ,ωik+1) (resp.

L+
(ωit ,λn)) the part of Lωik+ωik+1

(resp. Lωit+λn) constituting this right isosceles

triangle. Note that L−(ωik ,ωik+1) (resp. L−(ωit ,λn)) and L+
(ωik ,ωik+1) (resp. L+

(ωit ,λn))

are of the same size with each base of length i. Now, for each Y ∈ F (λ), set

Y −(ωik ,ωik+1) = Y ∩ L−(ωik ,ωik+1), Y +
(ωik ,ωik+1) = Y ∩ L+

(ωik ,ωik+1),

Y −(ωit ,λn) = Y ∩ L−(ωit ,λn), Y +
(ωit ,λn) = Y ∩ L+

(ωit ,λn)

and denote by |Y −(ωik ,ωik+1)| (resp. |Y −(ωit ,λn)|) the wall obtained by reflecting

Y −(ωik ,ωik+1) (resp. Y −(ωit ,λn)) with respect to the upper n-row and shifting the blocks
to the right as much as possible.

Example 2.6. If g = B5, λ = ω3 + λ5 and
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then we have

Here, the shaded parts represent L−(ω3,λ5) and L+
(ω3,λ5).

For a = 1, · · · , n− 1, consider the Y ωik+ωik+1
and Y ωit+λn of Y ∈ F (λ) having

the configuration in Figure 9. That is, the top of the p-th column of Y ωik (resp.

Y ωit ) from the right is and the top of the q-th column of Y ωik+1
(resp. Y λn)

from the right is with p > q.

Figure 9.

We define L+
ωik

(a; p, q) (resp. L+
ωik+1

(a; p, q)) to be the right isosceles triangle
formed by an a-block in the q-th column, an (a + p − q − 1)-block in the q-th
column and an (a+p− q−1)-block in the (p−1)-th column in Yωik (resp. Yωik+1

).
Then the wall obtained by reflecting L+

ωik
(a; p, q) (resp. L+

ωik+1
(a; p, q)) with respect

to the n-row will be denoted by L−ωik
(a; p, q) (resp. L−ωik+1

(a; p, q)). The shaded
parts in Figure 10 represent L±ωik (a; p, q) and L±ωik+1

(a; p, q). Now, we also define
L±ωit (a, p, q) in a similar way, and for each Y ∈ F (λ), set

(2.5)
Y ±ωik

(a; p, q) = L±ωik
(a; p, q) ∩ Y, Y ±ωik+1

(a; p, q) = L±ωik+1
(a; p, q) ∩ Y,

Y ±ωit (a; p, q) = L±ωit (a; p, q) ∩ Y,

and let |Y −ωik (a; p, q)| be the wall obtained by reflecting Y −ωik (a; p, q) with respect to
the n-row and shifting the blocks to the right as much as possible.
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Figure 10.

Example 2.7. If g = C5, λ = ω3 + ω4 and

then we have

and

Here, the shaded parts represent L±ωi(2; 3, 1) for i = 3, 4.



2364 S.-J. KANG, J.-A. KIM, H. LEE, AND D.-U. SHIN

Now, we are ready to give an explicit description of the crystal graph B(λ) over
g = Cn and Bn.

Theorem 2.8. Let λ ∈ P+ be a dominant integral weight for g = Cn, and write

λ = ωi1 + · · ·+ ωit (1 ≤ i1 ≤ · · · ≤ it ≤ n).

We define Y (λ) to be the set of all reduced proper Young walls in F (λ) satisfying
the following conditions:

(Y1) For each k = 1, · · · , t, we have Y +
ωik
⊂ |Y −ωik |.

(Y2) For each k = 1, · · · , t− 1, we have Y ωik ⊂ Y ωik+1 in Y ωik+ωik+1
.

(Y3) For each k = 1, · · · , t− 1, we have |Y −(ωik ,ωik+1)| ⊂ Y
+
(ωik ,ωik+1).

(Y4) For each k = 1, · · · , t− 1, if Y ωik+ωik+1
satisfies (C1), then we have

Y +
ωik

(a; p, q) ⊂ |Y −ωik (a; p, q)|, Y +
ωik+1

(a; p, q) ⊂ |Y −ωik+1
(a; p, q)|.

Then there is an isomorphism of Uq(Cn)-crystals

(2.6) Y (λ) ∼−→ B(λ) given by Hλ 7−→ uλ,

where uλ is the highest weight vector in B(λ).

Theorem 2.9. Let λ ∈ P+ be a dominant integral weight for g = Bn, and write

λ = ωi1 + · · ·+ ωit (1 ≤ i1 ≤ · · · ≤ it ≤ n) or

λ = ωi1 + · · ·+ ωit + λn (1 ≤ i1 ≤ · · · ≤ it ≤ n).

We define Y (λ) to be the set of all reduced proper Young walls in F (λ) satisfying
the following conditions:

(Y1) For each k = 1, · · · , t, we have Y +
ωik
⊂ |Y −ωik |.

(Y2) For each k = 1, · · · , t− 1, we have

Y ωik ⊂ Y ωik+1 in Y ωik+ωik+1
and Y ωit ⊂ Y λn in Y ωit+λn .

(Y3) For each k = 1, · · · , t− 1, we have

|Y −(ωik ,ωik+1)| ⊂ Y
+

(ωik ,ωik+1), |Y −(ωit ,λn)| ⊂ Y
+

(ωit ,λn).

(Y4) For each k = 1, · · · , t − 1, if Y ωik+ωik+1
or Y ωit+λn satisfies (C1), then

we have

Y +
ωik

(a; p, q) ⊂ |Y −ωik (a; p, q)|, Y +
ωik+1

(a; p, q) ⊂ |Y −ωik+1
(a; p, q)|,

Y +
ωit

(a; p, q) ⊂ |Y −ωit (a; p, q)|.
Then there is an isomorphism of crystal graphs for Uq(Bn)-modules

(2.7) Y (λ) ∼−→ B(λ) given by Hλ 7−→ uλ,

where uλ is the highest weight vector in B(λ).

Remark 2.10. If λ = λn, then Y (λn) = F (λn), the set of all reduced proper Young
walls lying between Hλn and Lλn .

Example 2.11. Let g = C3 and λ = ω2 + ω3. Then, in Figure 11, the first Young
wall belongs to Y (λ) but the second one and the third one do not. The second
one does not satisfy (Y1) and the third one does not satisfy (Y2). Here, in the
second Young wall, the shaded parts represent L±ω3

, and in the third Young wall,
the shaded parts represent Lω2 and Lω3 .
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Figure 11.

Figure 12.

Example 2.12. Let g = B4 and λ = ω3 + λ4. Then, in Figure 12, the first Young
wall belongs to Y (λ), but the other ones do not. They do not satisfy the conditions
(Y1), (Y3) and (Y4), respectively. Here, the shaded parts represent L±ω3

, L±(ω3,λ4)

and L±ω3
(3; 2, 1) in the second, third and fourth Young walls, respectively.

Finally, we focus on the case g = Dn. If Y ωik of Y ∈ F (λ) contains a row
consisting of n-blocks and (n − 1)-blocks, which will be called the (n − 1, n)-row,
then we define the walls Y ±ωik and |Y −ωik | as in the case of g = Cn or Bn.

Example 2.13. If g = D5, λ = ω6 and
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then we have

Consider Lωik+ωik+1
, Lωit+λn or Lωit+λn−1 of Y ∈ F (λ). As we can see from

Figure 13, Lωik+ωik+1
contains two (n − 1, n)-rows above Hωik+ωik+1

. We denote
by bL the left-most blocks in the upper (n − 1, n)-row and bR the blocks lying in
the (i − 2)-th column to the right of bL. Then the blocks bL, bR and the block b
lying in the (i − 2)-th row below bL form a right isosceles triangle. We denote by
L−(ωik ,ωik+1 ) the part of Lωik+ωik+1

consisting of this right isosceles triangle. Note

that the size of L−(ωik ,ωik+1) in the case of Dn is smaller than that of L−(ωik ,ωik+1) in
the case of Cn or Bn.

Figure 13.

Similarly, let b′R be the right-most blocks in the lower (n− 1, n)-row outside the
highest weight vector Hωik+ωik+1

and let b′L be the blocks lying in the (i − 2)-th
column to the left of b′R. Then the blocks b′R, b′L and the block b′ lying in the (i−2)-
th row above b′R form another right isosceles triangle. We denote by L+

(ωik ,ωik+1 ) the

part of Lωik+ωik+1
consisting of this right isosceles triangle. Note that L−(ωik ,ωik+1)

and L+
(ωik ,ωik+1) are of the same size with each base of length i − 1. Now, we can

also define L±(ωit ,λn−1) and L±(ωit ,λn) in a similar way, and set

(2.8)
Y −(ωik ,ωik+1) = Y ∩ L−(ωik ,ωik+1), Y +

(ωik ,ωik+1) = Y ∩ L+
(ωik ,ωik+1),

Y ±(ωit ,λn−1) = Y ∩ L±(ωit ,λn−1), Y ±(ωit ,λn) = Y ∩ L±(ωit ,λn).
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As usual, let |Y −(ωik ,ωik+1)| (resp. |Y −(ωit ,λn−1)| and |Y −(ωit ,λn)|) be the wall obtained by

reflecting Y −(ωik ,ωik+1) (resp. Y −(ωit ,λn−1) and Y −(ωit ,λn)) with respect to the (n−1, n)-
row and shifting the blocks to the right as much as possible.

Example 2.14. If g = D7, λ = ω5 + λ6, and

then we have

Here, the shaded parts represent L−(ω5,λ6) and L+
(ω5,λ6), respectively.

Assume that Y ωik+ωik+1
, Y ωit+λn or Y ωit+λn−1 of Y ∈ F (λ) satisfies (C1).

Then we can define L±ωik
(a; p, q), L±ωik+1

(a; p, q), Y ±ωik (a; p, q), Y ±ωik+1
(a; p, q) and

|Y ±ωik+1
(a; p, q)| as in the case of g = Cn or Bn.

Now, suppose that Y ωik+ωik+1
, Y ωit+λn or Y ωit+λn−1 of Y ∈ F (λ) have the

configuration in Figure 14. That is, the top of the p-th column of Y ωik from the

right is or . In the case of or (resp. or ), the top

of the q-th column of Y ωik+1
from the right is or (resp. or ) when

q − p is odd and the top of the q-th column of Y ωik+1
from the right is or

(resp. or ) when q − p is even.

We define Lωik (n − 1, n; p, q) to be the parallelogram formed by the (n − q)-
block and (n − q + p − 1)-block in the q-th column, and the (n − i)-block and
(n − i + p − 1)-block in the i-th column lying below the (n − 1, n)-row. We will
denote by Lωik+1

(n− 1, n; p, q) the parallelogram formed by the (n− q)-block and
(n− i)-block in the first column, and the (n− q + p− 1)-block and (n− i+ p− 1)-
block in the p-th column lying above the (n−1, n)-row. Similarly, we can define the
parallelograms Lωit (n− 1, n; p, q), Lλn(n− 1, n; p, q) and Lλn−1(n− 1, n; p, q). The
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Figure 14.

Figure 15.

shaded parts in Figure 15 represent Lωik (n − 1, n; p, q) and Lωik+1
(n − 1, n; p, q).

Here, α and β are n or n− 1 in the hypothesis.
We define

Yωik (n− 1, n; p, q) = Lωik (n− 1, n; p, q) ∩ Y,
Yωik+1

(n− 1, n; p, q) = Lωik+1
(n− 1, n; p, q) ∩ Y,

Yωit (n− 1, n; p, q) = Lωit (n− 1, n; p, q) ∩ Y,
Yλn−1(n− 1, n; p, q) = Lλn−1(n− 1, n; p, q) ∩ Y,
Yλn(n− 1, n; p, q) = Lλn(n− 1, n; p, q) ∩ Y,
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and let |Yωik (n − 1, n; p, q)| be the wall obtained by reflecting Yωik (n − 1, n; p, q)
with respect to the (n− 1, n)-arrow and shifting the blocks to the right as much as
possible and let Y tωik+1

(n− 1, n; p, q) be the wall obtained by shifting the blocks of
Yωik+1

(n− 1, n; p, q) to the right as much as possible.

Example 2.15. If g = D8, λ = ω5 + ω6 and

then we have

Here, the shaded parts represent Lω5(7, 8; 3, 4) and Lω6(7, 8; 3, 4).

Theorem 2.16. Let λ ∈ P+ be a dominant integral weight for g = Dn and write

λ = ωi1 + · · ·+ ωit + b1λn−1 + b2λn,

where 1 ≤ i1 ≤ · · · ≤ it ≤ n+1 and (b1, b2) = (1, 0) or (0, 1).
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Define Y (λ) to be the set of all reduced proper Young walls in F (λ) satisfying
the following conditions:

(Y1) For each k = 1, · · · , t, we have Y +
ωik
⊂ |Y −ωik |.

(Y2) For each k = 1, · · · , t− 1, we have

Y ωik ⊂Y ωik+1 in Y ωik+ωik+1
, Y ωit ⊂Y λn−1 in Y ωit+λn−1 , Y ωit ⊂Y λn in Y ωit+λn .

(Y3) For each k = 1, · · · , t− 1, we have

|Y −(ωik ,ωik+1)| ⊂ Y
+
(ωik ,ωik+1), |Y −(ωit ,λn−1)| ⊂ Y

+
(ωit ,λn−1), |Y −(ωit ,λn)| ⊂ Y

+
(ωit ,λn).

(Y4) For each k = 1, · · · , t − 1, if Y ωik+ωik+1
, Y ωit+λn−1 or Y ωit+λn satisfies

(C1), then we have

Y +
ωik

(a; p, q) ⊂ |Y −ωik (a; p, q)|, Y +
ωik+1

(a; p, q) ⊂ |Y −ωik+1
(a; p, q)|,

Y +
ωit

(a; p, q) ⊂ |Y −ωit (a; p, q)|.

(Y5) For each k = 1, · · · , t − 1, if Y ωik+ωik+1
, Y ωit+λn−1 or Y ωit+λn satisfies

(C2), then we have

|Yωik (n− 1, n; p, q)| ⊂ Y tωik+1
(n− 1, n; p, q),

|Yωit (n− 1, n; p, q)| ⊂ Y tλn−1
(n− 1, n; p, q),

|Yωit (n− 1, n; p, q)| ⊂ Y tλn(n− 1, n; p, q).

Then there exists an isomorphism of Uq(Dn)-crystals

(2.9) Y (λ) ∼−→ B(λ) given by Hλ 7−→ uλ,

where uλ is the highest weight vector in B(λ).

Example 2.17. Let g = D4 and λ = ω3 + λ4. Then, in Figure 16, the first
Young wall belongs to Y (λ), but the other ones do not. They do not satisfy the
conditions (Y1), (Y3), (Y4) and (Y5), respectively. Here, the shaded parts
represent L±ω3

, L±(ω3,λ4), L
±
ω3

(2; 3, 1), and Lω3(3, 4; 1, 2) and Lλ4(3, 4; 1, 2) in the
second, third, fourth and fifth Young walls, respectively.

Figure 16.
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3. The proof of the main theorem

In this section, we will give a proof of our main theorems. In fact, we will only
prove the case g = Bn because the remaining cases can be proved in a similar
manner. Observe that it suffices to prove the following statements:

(1) For all i = 1, · · · , n, we have

ẽiY (λ) ⊂ Y (λ) ∪ {0}, f̃iY (λ) ⊂ Y (λ) ∪ {0}.

(2) If Y ∈ Y (λ) satisfies ẽiY = 0 for all i = 1, · · · , n, then Y = Hλ.

The proof of Theorem 2.9. We first prove the statement (1). Let Y ∈ Y (λ) and
suppose that f̃iY 6= 0 but f̃iY /∈ Y (λ) for some i ∈ I. Then f̃iY would violate at
least one of the conditions (Y1)-(Y4).

(Case 1) Suppose f̃iY does not satisfy (Y1). Then there is an i-admissible
slot in some Y +

ωik
, where an i-block can be added to get f̃iY such that (f̃iY )+

ωik
*

(f̃iY )−ωik . Note that i 6= n because (f̃nY )±ωik = Y ±ωik
for all k = 1, · · · , t. For

simplicity, we denote by N±j the number of j-blocks in Y ±ωik
. Then N+

j ≤ N−j for
all j = 1, · · · , n− 1 because Y +

ωik
⊂ Y −ωik . Since Y is proper, we have

N+
i−1 = N+

i and N+
i+1 = N+

i + 1.

Moreover, since Y +
ωik
⊂ Y −ωik but (f̃iY )+

ωik
* (f̃iY )−ωik , we can deduce N−i = N+

i =
N+
i−1 ≤ N−i−1. Observe that Hωik

is of staircase shape below the ik-row. Then
we have N−i+1 ≤ N−i + 1. But we know that N−i + 1 = N+

i + 1 = N+
i+1 ≤ N−i+1.

Therefore, N−i+1 = N−i + 1 and Y must have the form shown in Figure 17. That
is, there is another i-admissible slot in Y −ωik

. Then, by the tensor product rule for

the Kashiwara operators, f̃i would have acted on the i-admissible slot in Y −ωik , not

on the one in Y +
ωik

, which is a contradiction. Hence, f̃iY must satisfy the condition
(Y1).

Figure 17.
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Figure 18.

(Case 2) Suppose f̃iY does not satisfy (Y2). Then there exists an i-admissible
slot in some Y ωik (or Y ωit ), where an i-block can be added to get f̃iY such that

(f̃iY )ωik * (f̃iY )ωik+1 (or (f̃iY )ωit * (f̃iY )λn).

If 1 ≤ i ≤ n − 1, since Y is proper, Y has a subwall of the form

or in Y ωik (or Y ωit ). Since Y satisfies (Y2) and just adding an

i-block to Y ωik would violate (Y2), the same part appears in Y ωik+1 (or Y λn), as
is shown in Figure 18.

We claim that there is no removable i-block between these two parts. Then by
the tensor product rule, f̃i would have acted on the i-admissible slot in Y ωik+1 (or
Y λn), not on the one in Y ωik (or Y ωit ), which is a contradiction. Hence f̃iY must
satisfy (Y2). To prove our claim, assume first that there exists a removable i-block
in Y ωik . Then Y must have the shape given in Figure 19. Thus Y +

(ωik ,ωik+1) would

contain the part and Y −(ωik ,ωik+1) would contain one of the parts ,

or . This implies that Y does not satisfy the conditions (Y3) or

(Y4), which is a contradiction. Hence there is no removable i-block in Y ωik . Next,
assume that there exists a removable i-block in Y ωik+1 . Then Y must have the
shape given in Figure 20.
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Figure 19.

Figure 20.

Now, by a similar argument as above, one can see that Y does not satisfy (Y3)
or (Y4), which is a contradiction. Thus there is no removable i-block between
these two parts as we claimed.
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Figure 21.

If i = n, then Y has a subwall of the form

The case (b) does not occur because Y would not satisfy the condition (Y3). In
the case of (a), f̃n would have acted on the n-admissible slot in Y ωik+1 not on the
one in Y ωik , which is a contradiction. Therefore, f̃iY must satisfy the condition
(Y2).

(Case 3) If f̃iY does not satisfy (Y3), then by a similar argument to (Case 1)
and (Case 2), we can derive a contradiction. Hence, f̃iY must satisfy the condition
(Y3).

(Case 4) Suppose that f̃iY (1 ≤ i ≤ n − 1) has the configuration (C1) but
does not satisfy (Y4). (If i = n, f̃nY does not have the configuration (C1) by the
condition (Y3).) Then we have the following two possibilities:

(a) Y has the configuration (C1), Y satisfies (Y4), but f̃iY does not satisfy
(Y4).

(b) Y does not have the configuration (C1), f̃iY has the configuration (C1),
but f̃iY does not satisfy (Y4).

On the one hand, in the case of (a), f̃iY must have the form shown in Figure 21
because Y satisfies (Y4). Then f̃i would have acted on ~, not on , which is a
contradiction.

On the other hand, in the case of (b), observe that, by adding an i-block to Y ,
f̃iY can have the configuration (C1) with a = i or a = i + 1, which is shown in
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Figure 22.

Figure 23.

Figure 22. In case (i) of this figure, if f̃iY violates the condition (Y4), then f̃iY

must have the form shown in Figure 23. In the first case, f̃i would have acted on
~, not on , which is a contradiction. In the second case, since Y satisfies (Y1)
and (Y2), we can observe that Y must have the form shown in Figure 24, where
s ≤ t < p, q < u < r and i < k < j. That is, Y also has the configuration (C1)
and does not satisfy (Y4), which is a contradiction.
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Figure 24.

Figure 25.

In case (ii) of Figure 22, we note that the top of the (q− 1)-th column in Y ωik+1

(or Y λn) must be an i-block by the tensor product rule for the Kashiwara operators.
Then we know that Y also has a configuration (C1) (see Figure 25).

But, since Y satisfies the condition (Y4), adding an i-block to Y ωik does not
create a Young wall which violates the condition (Y4); i.e., the second case does
not occur.

Similarly, if Y ∈ Y (λ), then we can show that ẽiY ∈ Y (λ) ∪ {0}.
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Figure 26.

Now, it remains to prove the statement (2). Suppose Y ∈ Y (λ) and ẽiY = 0
for all i = 1, · · · , n. If Y 6= Hλ, then there is a column in Y which is higher than
Hλ. Consider the left-most column Ys among them, which would belong to Y ωik
or Y λn . Let be the block lying in the top of the column Ys. If there is an
i-admissible slot to the left of , then Y has the form shown in Figure 26.

However, in this case, Y +
ωik

* |Y −ωik |, which violates the condition (Y1). Hence,

there is no admissible i-slot to the left of Ys, which implies ẽiY = Y ↗ 6= 0, a
contradiction. Therefore, Y must be equal to Hλ. �
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