478 research outputs found
Probable Case of Neuroleptic Malignant Syndrome Following Administration of Antituberculotic Drugs in a Chlorpromazine-Treated Patient
Neuroleptic malignant syndrome (NMS), a potentially fatal adverse reaction to neuroleptics, is known to occur more often in the initial stage of antipsychotic treatment. We describe a patient with chronic schizophrenia who, in a few days after the addition of antituberculotic drugs to his antipsychotic regimen, developed probable NMS without pyrexia. We reasoned that rifampin, a strong hepatic enzyme inducer, decreased the plasma chlorpromazine concentration of the patient, with the result of cholinergic hyperactivity and finally, the symptoms of NMS. Therefore, physicians should be aware of drug interactions and the likelihood of NMS, and consider antipsychotic dose adjustment when prescribing drugs that may influence pharmacokinetic properties of antipsychotics in a patient with schizophrenia receiving long-term antipsychotic treatment
Molecular cloning and Biochemical properties of GH-16 β-agarase from Gilvimarinus agarolyticus JEA5
Agar is complex polysaccharide founds in the cell walls of some red algae and up to 70 % of the algal cell wall can be agar polymers. Agar was formed by a mixture of two polysaccharides named agarose and agaropectin.
Agarose can be hydrolyzed by α-agarase (E.C. 3.2.1.158) and by β-agarase (E.C. 3.2.1.81); the former cleaves the α-1, 3 linkage of agarose to generate agaro-oligosaccharides, and the latter cleaves the β-1,4 linkage to generate neoagaro-oligosaccharides. Agarases have been isolated from many sources, including seawater, marine sediments, marine algae, marine mollusks, fresh water and soil. Recently, Givimarinus chinensis, G. polysacchalyticus, G. agarilyticus were identified and their agarolytic activity also reported. However, there are no report published that molecular and functional characterization of agarase from Givimarinus genus. In this study, we first report molecular characterization and biochemical properties of agarase from Gilvimarinus genus.
Please click Additional Files below to see the full abstract
A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase
Tyrosinase efficiently catalyzes the ortho-hydroxylation of monophenols and the oxidation of diphenols without any additional cofactors. Although it is of significant interest for the biosynthesis of catechol derivatives, the rapid catechol oxidase activity and inactivation of tyrosinase have hampered its practical utilization as a monophenol monooxygenase. Here, we prepared a functional tyrosinase that exhibited a distinguished monophenolase/diphenolase activity ratio (V max mono/ V max di = 3.83) and enhanced catalytic efficiency against L-tyrosine (k cat = 3.33 ± 0.18 s−1, K m = 2.12 ± 0.14 mM at 20 °C and pH 6.0). This enzyme was still highly active in ice water (>80%), and its activity was well conserved below 30 °C. In vitro DOPA modification, with a remarkably high yield as a monophenol monooxygenase, was achieved by the enzyme taking advantage of these biocatalytic properties. These results demonstrate the strong potential for this enzyme’s use as a monophenol monooxygenase in biomedical and industrial applications.113Nsciescopu
In vivo and in vitro studies of Mgs1 suggest a link between genome instability and Okazaki fragment processing
The non-essential MGS1 gene of Saccharomyces cerevisiae is highly conserved in eukaryotes and encodes an enzyme containing both DNA-dependent ATPase and DNA annealing activities. MGS1 appears to function in post-replicational repair processes that contribute to genome stability. In this study, we identified MGS1 as a multicopy suppressor of the temperature-sensitive dna2Δ405N mutation, a DNA2 allele lacking the N-terminal 405 amino acid residues. Mgs1 stimulates the structure-specific nuclease activity of Rad27 (yeast Fen1 or yFen1) in an ATP-dependent manner. ATP binding but not hydrolysis was sufficient for the stimulatory effect of Mgs1, since non-hydrolyzable ATP analogs are as effective as ATP. Suppression of the temperature-sensitive growth defect of dna2Δ405N required the presence of a functional copy of RAD27, indicating that Mgs1 suppressed the dna2Δ405N mutation by increasing the activity of yFen1 (Rad27) in vivo. Our results provide in vivo and in vitro evidence that Mgs1 is involved in Okazaki fragment processing by modulating Fen1 activity. The data presented raise the possibility that the absence of MGS1 may impair the processing of Okazaki fragments, leading to genomic instability
Synergistic effect of acetyl xylan esterase on xylanase reaction originated from Ochrovirga pacifica
Acetyl xylan esterase plays an important role in complete enzymatic hydrolysis of lignocellulosic materials into fermentable sugars. It hydrolyzes ester linkages of acetic acid in xylan polysaccharide and supports to enhance the activity of xylanase. This study was conducted to recognize and overexpress the acetyl xylan esterase gene found from Ochrovirga pacifica strain S85 which was isolated from Chuuk state, Micronesia. The genome sequence was analyzed with genome sequencer-FLX and acetyl xylan esterase gene (Axe) was detected. The gene had an open reading frame of 864 bp encoding a polypeptide of 287 amino acids. Theoretical molecular mass and isoelectric point (pI) were 32 kDa and 5.9, respectively. The deduced amino acid sequence of the Axe showed 35.1% similarity with both endo-1,4-β-xylanase B from Robiginitalea biformata HTCC2501. The mature protein displayed the catalytic residues classically found in enzymes belonged to GH16 family. Axe was cloned into pET11a vector and recombinant protein was expressed in E. coli BL21 (DE3), purified by nickel affinity chromatography and its purity was visualized on SDS-PAGE. Commercial xylanase activity was tested after treatment of recombinant acetyl xylan esterase (rAXE) to birchwood xylan substrate. The xylanase activity of rAXE treated sample was about 2 times higher than xylanase only treated sample.
Please click Additional Files below to see the full abstract
Recombinant protein production in Escherichia coli by combining of signal peptide originated from Bacillus subtilis
We isolated chitosanase secreting B. subtilis CH2 and identified the chitosanase nucleotide sequence. Analyzed the sequence showed that it consisted of 813 bp, including 87 bp signal sequence. The signal sequence leads the target protein to the cell-membrane of the B. subtilis CH2 and then secret the chitosanase out of the cell. The signal peptide showed 6 amino acids deletion compared to other B. subtilis chitosanase signal peptides. The chitosanase sequence including signal peptide was cloned into pET11a vector without fusion and expressed in E. coli BL21(DE3). The expressed chitosanase in E. coli showed two distinct bands which represent the pro-chitosanase in cytoplasm and mature chitosanase in periplasm. Time frame induction and results showed that muture chitosanase was increased. Subsequently, we linked this chitosanase signal sequence in front of B. subtilis CH2 xylanase and human superoxide distimutase 1 (hSOD1) sequences, and expressed it in E. coli BL21(DE3). The recombinant xylanase and hSOD1 moved to periplasmic space with high efficiency. This signal sequence is useful for bio-medical protein production in E. coli.
Please click Additional Files below to see the full abstract
The potential of non-movement behavior observation method for detection of sick broiler chickens
The poultry industry, which produces excellent sources of protein, suffers enormous economic damage from diseases. To solve this problem, research is being conducted on the early detection of infection according to the behavioral characteristics of poultry. The purpose of this study was to evaluate the potential of a non-movement behavior observation method to detect sick chickens. Forty 1-day-old Ross 308 males were used in the experiments, and an isolator equipped with an Internet Protocol (IP) camera was fabricated for observation. The chickens were inoculated with Salmonella enterica serovar Gallinarum A18-GCVP-014, the causative agent of fowl typhoid (FT), at 14 days of age, which is a vulnerable period for FT infection. The chickens were continuously observed with an IP camera for 2 weeks after inoculation, chickens that did not move for more than 30 minutes were detected and marked according to the algorithm. FT infection was confirmed based on clinical symptoms, analysis of cardiac, spleen and liver lesion scores, pathogen re-isolation, and serological analysis. As a result, clinical symptoms were first observed four days after inoculation, and dead chickens were observed on day six. Eleven days after inoculation, the number of clinical symptoms gradually decreased, indicating a state of recovery. For lesion scores, dead chickens scored 3.57 and live chickens scored 2.38. Pathogens were re-isolated in 37 out of 40 chickens, and hemagglutination test was positive in seven out of 26 chickens. The IP camera applied with the algorithm detected about 83% of the chickens that died in advance through non-movement behavior observation. Therefore, observation of non-movement behavior is one of the ways to detect infected chickens in advance, and it appears to have potential for the development of remote broiler management system
Dysfunction in Configural Face Processing in Patients With Schizophrenia
Background: Face recognition has important implications for patients with schizophrenia, who exhibit poor interpersonal and social skills. Previous reports have suggested that patients with schizophrenia have deficits in their ability to recognize faces, and because face recognition relies heavily on information about the configuration of faces, we hypothesized that patients with schizophrenia would have specific problems in processing configural information. Methods: We measured the performance of 20 patients with schizophrenia and 20 normal subjects in a face-discrimination task, using upright and inverted pairs of face photographs that differed in featural or configural information. Results: The patients with schizophrenia showed disproportionately poorer performance in discriminating configural compared with featural face sets. Conclusion: The result suggests that the face-recognition deficit in schizophrenic patients is due to specific impairments in configural processing of faces
A New Mechanism For Baryogenesis Living Through Electroweak Era
We present a new mechanism for baryogenesis by introducing a heavy
vector-like SU(2)_W singlet quark(s) with Q_{em}=2/3 quark U or Q_{em}=-1/3
quark D. The lifetime of the heavy quark is assumed to be in the range 2 \times
10^{-11}s < t < 1s. Being SU(2)_W singlet, it survives the electroweak phase
transition era. It mixes with SU(2)_W doublet quarks with tiny mixing angles to
satisfy the FCNC constraints, where a simple Z_2 symmetry is suggested for
realizing this scheme. The heavy quark asymmetry is generated in analogy with
the old GUT scenario.Comment: 10 pages, typos corrected, the washout rate by sphaleron corrected
and new bound from the decay using 4 fermi interaction adde
- …