2,005 research outputs found

    Minimization of inspection cost by determining the optimal number of quality inspectors in the garment industry

    Get PDF
    This study has been aimed at developing a model to reduce inspection cost by determining the optimum number of quality inspectors with respect to their skill levels using goal programming. A mathematical model is proposed to find out the optimal combination of decision variables. It is concluded that inspection cost may be reduced by optimising the skill level of the quality inspectors

    Tailoring Low-field Strain Properties of [0.97Bi1/2(Na0.78K0.22)1/2TiO3-0.03LaFeO3]-Bi1/2(Na0.82K0.18)1/2TiO3 Lead-Free Relaxor/Ferroelectric Composites

    Get PDF
    We investigated the effect of Bi1/2(Na0.82K0.18)1/2TiO3 (BNKT) modification on the ferroelectric and electric-field-induced strain (EFIS) properties of lead-free 0.97Bi1/2(Na0.82K0.18)1/2TiO3-0.03LaFeO3 (BNKTLF) ceramics as a function of BNKT content (x= 0, 0.1, 0.2, 0.3, 0.5, and 1). BNKT-modified BNKTLF powders were synthesized using a conventional solid-state reaction method. As the BNKT content x increased from 0 to 1 the normalized electric-field-induced strain (Smax/Emax) was observed to increase at relatively low fields, i.e., below the poling field. Moreover, BNKTLF-30BNKT showed about 460 pm/V as low as at 3 kV/mm, which is a considerably high value among the lead-free systems reported so far. Consequently, it was confirmed that ceramic-ceramic composite, a mixture of an ergodic relaxor matrix and embedded ferroelectric seeds, is a salient way to make lead-free piezoelectrics practical with enhanced EFIS at low field as well as less hysterical.ope

    Seismic Improvement of RC Beam-Column Joints Using Hexagonal CFRP Bars combined with CFRP Sheets

    Get PDF
    Under severe earthquake conditions, the lack of strength and ductility in reinforced concrete beam–column joints with non-seismic details raises serious concerns for overall structural safety. In this study, experimental research was carried out in order to try and improve the seismic strength and performance of reinforced concrete exterior beam–column joints by applying embedded carbon fiber-reinforced polymer (CFRP) bars combined with CFRP sheets. CFRP bars have a flat-typed hexagonal cross-section. Specimens of reinforced concrete exterior beam–column joints were manufactured based on a newly developed strengthening method by applying embedded CFRP hexagonal bars combined with externally bonded CFRP sheets, and tested for comparison with the specimen of a conventional reinforced concrete exterior beam–column joint. The newly developed design approach could minimize damage and improve the overall structural performances of beam–column joints under cyclic load reversals

    Trustworthiness-Driven Graph Convolutional Networks for Signed Network Embedding

    Full text link
    The problem of representing nodes in a signed network as low-dimensional vectors, known as signed network embedding (SNE), has garnered considerable attention in recent years. While several SNE methods based on graph convolutional networks (GCN) have been proposed for this problem, we point out that they significantly rely on the assumption that the decades-old balance theory always holds in the real-world. To address this limitation, we propose a novel GCN-based SNE approach, named as TrustSGCN, which corrects for incorrect embedding propagation in GCN by utilizing the trustworthiness on edge signs for high-order relationships inferred by the balance theory. The proposed approach consists of three modules: (M1) generation of each node's extended ego-network; (M2) measurement of trustworthiness on edge signs; and (M3) trustworthiness-aware propagation of embeddings. Furthermore, TrustSGCN learns the node embeddings by leveraging two well-known societal theories, i.e., balance and status. The experiments on four real-world signed network datasets demonstrate that TrustSGCN consistently outperforms five state-of-the-art GCN-based SNE methods. The code is available at https://github.com/kmj0792/TrustSGCN.Comment: 12 pages, 8 figures, 9 table

    Observation and Numerical Prediction of 2011 East Japan Tsunami Inpacific Ocean

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Advanced Technologies for Large-Sized OLED Display

    Get PDF
    Five years have passed, since the first 55″ full high-definition (FHD) OLED TV fabricated on Gen 8.5 glass was successfully launched into the TV market. For the time being, the size of OLED TV became diverse from 55″ to 77″, and the resolution was doubled into ultrahigh definition (UHD). The brightness and color gamut were enhanced, while the lower power consumption was realized. Utmost picture quality and slim form factor of OLED TV as well as the improved performance have made OLED TV recognized as the best premium TV. In this chapter, we describe the recent progress in three key technologies, which enable such an enhancement of performance in OLED TV, i.e., oxide thin-film transistor (TFT) and white organic light-emitting diode (WOLED), compensation circuit, and method to compensate the nonuniformity of oxide TFTs, OLED devices, and luminance
    corecore