60,418 research outputs found

    Imaging of fuel mixture fraction oscillations in a driven system using acetone PLIF

    Get PDF
    Measurements of fuel mixture fraction are made for a jet flame in an acoustic chamber. Acoustic forcing creates a spatially-uniform, temporally-varying pressure field which results in oscillatory behavior in the flame . Forcing is at 22,27, 32, 37, and 55 Hz. To asses the oscillatory behavior, previous work included chemiluminescence, OH PUF, nitric oxide PUF imaging, and fuel mixture fraction measurements by infrared laser absorption. While these results illuminated what was happening to the flame chemistry, they did not provide a complete explanation as to why these things were happening. In this work, the fuel mixture fraction is measured through PUF of acetone, which is introduced into the fuel stream as a marker. This technique enables a high degree of spatial resolution of fuel/air mixture value. Both non-reacting and reacting cases were measured and comparisons are drawn with the results from the previous work. It is found that structure in the mixture fraction oscillations is a major contributor to the magnitude of the flame oscillations

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors

    Full text link
    Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi_2Sr_2CaCu_2O_{8 \pm \delta} superconductors. For underdoped superconductors, short range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c, the system exhibits a sharp Raman resonance of B_{1g} symmetry and energy of 75 meV and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 6 pages, 4 color figures, PDF forma

    Prefeasibility study of a space environment monitoring system /Semos/

    Get PDF
    Prefeasibility study of Space Environment Monitoring System within framework of Apollo Applications Progra

    Separable states and the geometric phases of an interacting two-spin system

    Full text link
    It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then always equal to the sum of the geometric phases of its subsystems. In this paper, we illustrate this point by investigating a well known physical model. We give a necessary and sufficient condition in which a separable state remains separable so that the geometric phase of the system is always equal to the sum of the geometric phases of its subsystems.Comment: 13 page

    StarGO: A New Method to Identify the Galactic Origins of Halo Stars

    Full text link
    We develop a new method StarGO (Stars' Galactic Origin) to identify the galactic origins of halo stars using their kinematics. Our method is based on self-organizing map (SOM), which is one of the most popular unsupervised learning algorithms. StarGO combines SOM with a novel adaptive group identification algorithm with essentially no free parameters. In order to evaluate our model, we build a synthetic stellar halo from mergers of nine satellites in the Milky Way. We construct the mock catalogue by extracting a heliocentric volume of 10 kpc from our simulations and assigning expected observational uncertainties corresponding to bright stars from Gaia DR2 and LAMOST DR5. We compare the results from StarGO against that from a Friends-of-Friends (FoF) based method in the space of orbital energy and angular momentum. We show that StarGO is able to systematically identify more satellites and achieve higher number fraction of identified stars for most of the satellites within the extracted volume. When applied to data from Gaia DR2, StarGO will enable us to reveal the origins of the inner stellar halo in unprecedented detail.Comment: 11 pages, 7 figures, Accepted for publication in Ap

    Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot

    Full text link
    We study coherent charge transfer between an Aharonov-Bohm ring and a side-attached quantum dot. The charge fluctuation between the two sub-structures is shown to give rise to algebraic suppression of the persistent current circulating the ring as the size of the ring becomes relatively large. The charge fluctuation at resonance provides transition between the diamagnetic and the paramagnetic states. Universal scaling, crossover behavior of the persistent current from a continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure

    Origins of the Isospin Violation of Dark Matter Interactions

    Full text link
    Light dark matter (DM) with a large DM-nucleon spin-independent cross section and furthermore proper isospin violation (ISV) fn/fp0.7f_n/f_p\approx-0.7 may provide a way to understand the confusing DM direct detection results. Combing with the stringent astrophysical and collider constraints, we systematically investigate the origin of ISV first via general operator analyses and further via specifying three kinds of (single) mediators: A light ZZ' from chiral U(1)XU(1)_X, an approximate spectator Higgs doublet (It can explain the W+jjW+jj anomaly simultaneously) and color triplets. In addition, although ZZ' from an exotic U(1)XU(1)_X mixing with U(1)YU(1)_Y generating fn=0f_n=0, we can combine it with the conventional Higgs to achieve proper ISV. As a concrete example, we propose the U(1)XU(1)_X model where the U(1)XU(1)_X charged light sneutrino is the inelastic DM, which dominantly annihilates to light dark states such as ZZ' with sub-GeV mass. This model can address the recent GoGeNT annual modulation consistent with other DM direct detection results and free of exclusions.Comment: References added and English greatly improve
    corecore