52,822 research outputs found

    Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors

    Full text link
    Nematic order resulting from the partial melting of density-waves has been proposed as the mechanism to explain nematicity in iron-based superconductors. An outstanding question, however, is whether the microscopic electronic model for these systems -- the multi-orbital Hubbard model -- displays such an ordered state as its leading instability. In contrast to usual electronic instabilities, such as magnetic and charge order, this fluctuation-driven phenomenon cannot be captured by the standard RPA method. Here, by including fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its nematic susceptibility and contrast it with its ferro-orbital order susceptibility, showing that its leading instability is the spin-driven nematic phase. Our results also demonstrate the primary role played by the dxyd_{xy} orbital in driving the nematic transition, and reveal that high-energy magnetic fluctuations are essential to stabilize nematic order in the absence of magnetic order.Comment: 8 pages, 6 figure

    Gauge/String-Gravity Duality and Froissart Bound

    Full text link
    The gauge/string-gravity duality correspondence opened renewed hope and possibility to address some of the fundamental and non-perturbative QCD problems in particle physics, such as hadron spectrum and Regge behavior of the scattering amplitude at high energies. One of the most fundamental and long-standing problem is the high energy behavior of total cross-sections. According to a series of exhaustive tests by the COMPETE group, (1). total cross-sections have a universal Heisenberg behavior in energy corresponding to the maximal energy behavior allowed by the Froissart bound, i.e., A+Bln2(s/s0)A + B ln^2 (s/s_0) with B0.32mbB \sim 0.32 mb and s034.41GeV2s_0 \sim 34.41 GeV^2 for all reactions, and (2). the factorization relation among σpp,even,σγp,andσγγ\sigma_{pp, even}, \sigma_{\gamma p}, and \sigma_{\gamma \gamma} is well satisfied by experiments. I discuss the recent interesting application of the gauge/string-gravity duality of AdS/CFTAdS/CFT correspondence with a deformed background metric so as to break the conformal symmetry that can lead to the Heisenberg behavior of rising total cross-sections, and present some preliminary results on the high energy QCD from Planckian scattering in AdSAdS and black-hole production.Comment: 10 pages, Presented to the Coral Gables Conference 2003, Launching of BelleE\'poque in High Energy Physics and Cosmology, 17 - 21 December 2003, Fort Lauderdale, Florid

    Correlation Assisted Phonon Softenings and the Mott-Peierls Transition in VO2_{2}

    Full text link
    To explore the driving mechanisms of the metal-insulator transition (MIT) and the structural transition in VO2, we have investigated phonon dispersions of rutile VO2 (R-VO2) in the DFT and the DFT+U (U : Coulomb correlation) band calculations. We have found that the phonon softening instabilities occur in both cases, but the softened phonon mode only in the DFT+U describes properly both the MIT and the structural transition from R-VO2 to monoclinic VO2 (M1-VO2). This feature demonstrates that the Coulomb correlation effect plays an essential role of assisting the Peierls transition in R-VO2. We have also found from the phonon dispersion of M1-VO2 that M1 structure becomes unstable under high pressure. We have predicted a new phase of VO2 at high pressure that has a monoclinic CaCl2-type structure with metallic nature

    An alternative formulation of classical electromagnetic duality

    Get PDF
    By introducing a doublet of electromagnetic four dimensional vector potentials, we set up a manifestly Lorentz covariant and SO(2) duality invariant classical field theory of electric and magnetic charges. In our formulation one does not need to introduce the concept of Dirac string.Comment: 14 pages, no figures, Latex, minor corrections, references and acknowledgements adde

    Reaction-diffusion with a time-dependent reaction rate: the single-species diffusion-annihilation process

    Full text link
    We study the single-species diffusion-annihilation process with a time-dependent reaction rate, lambda(t)=lambda_0 t^-omega. Scaling arguments show that there is a critical value of the decay exponent omega_c(d) separating a reaction-limited regime for omega > omega_c from a diffusion-limited regime for omega < omega_c. The particle density displays a mean-field, omega-dependent, decay when the process is reaction limited whereas it behaves as for a constant reaction rate when the process is diffusion limited. These results are confirmed by Monte Carlo simulations. They allow us to discuss the scaling behaviour of coupled diffusion-annihilation processes in terms of effective time-dependent reaction rates.Comment: 11 pages, 9 figures, minor correction

    Prefeasibility study of a space environment monitoring system /Semos/

    Get PDF
    Prefeasibility study of Space Environment Monitoring System within framework of Apollo Applications Progra

    Defect Motion and Lattice Pinning Barrier in Josephson-Junction Ladders

    Full text link
    We study motion of domain wall defects in a fully frustrated Josephson-unction ladder system, driven by small applied currents. For small system sizes, the energy barrier E_B to the defect motion is computed analytically via symmetry and topological considerations. More generally, we perform numerical simulations directly on the equations of motion, based on the resistively-shunted junction model, to study the dynamics of defects, varying the system size. Coherent motion of domain walls is observed for large system sizes. In the thermodynamical limit, we find E_B=0.1827 in units of the Josephson coupling energy.Comment: 7 pages, and to apear in Phys. Rev.
    corecore