15 research outputs found

    Assessment of skin inflammation using near-infrared Raman spectroscopy combined with artificial intelligence analysis in an animal model

    Get PDF
    Raman spectroscopy is a powerful method for estimating the molecular structure of a target that can be adapted for biomedical analysis given its non-destructive nature. Inflammatory skin diseases impair the skin’s barrier function and interfere with the patient’s quality of life. There are limited methods for non-invasive and objective assessment of skin inflammation. We examined whether Raman spectroscopy can be used to predict skin inflammation with high sensitivity and specificity when combined with artificial intelligence (AI) analysis. Inflammation was chemically induced in mouse ears, and Raman spectra induced by a 785 nm laser were recorded. A principal component (PC) analysis of the Raman spectra was performed to extract PCs with the highest percentage of variance and to estimate the statistical score. The accuracy in predicting inflammation based on the Raman spectra with or without AI analysis was assessed using receiver operating characteristic (ROC) curves. We observed some typical changes in the Raman spectra upon skin inflammation, which may have resulted from vasodilation and interstitial oedema. The estimated statistical scores based on spectral changes correlated with the histopathological changes in the skin. The ROC curve based on PC2, which appeared to include some spectral features, revealed a maximum accuracy rate of 80.0% with an area under the curve (AUC) of 0.864. The AI analysis improved the accuracy rate to 93.1% with an AUC of 0.972. The current findings demonstrate that the combination of Raman spectroscopy with near-infrared excitation and AI analysis can provide highly accurate information on the pathology of skin inflammation

    Infrequent RAS mutation is not associated with specific histological phenotype in gliomas

    Get PDF
    BACKGROUND: Mutations in driver genes such as IDH and BRAF have been identified in gliomas. Meanwhile, dysregulations in the p53, RB1, and MAPK and/or PI3K pathways are involved in the molecular pathogenesis of glioblastoma. RAS family genes activate MAPK through activation of RAF and PI3K to promote cell proliferation. RAS mutations are a well-known driver of mutation in many types of cancers, but knowledge of their significance for glioma is insufficient. The purpose of this study was to reveal the frequency and the clinical phenotype of RAS mutant in gliomas. METHODS: This study analysed RAS mutations and their clinical significance in 242 gliomas that were stored as unfixed or cryopreserved specimens removed at Kyoto University and Osaka National Hospital between May 2006 and October 2017. The hot spots mutation of IDH1/2, H3F3A, HIST1H3B, and TERT promoter and exon 2 and exon 3 of KRAS, HRAS, and NRAS were analysed with Sanger sequencing method, and 1p/19q codeletion was analysed with multiplex ligation-dependent probe amplification. DNA methylation array was performed in some RAS mutant tumours to improve accuracy of diagnosis. RESULTS: RAS mutations were identified in four gliomas with three KRAS mutations and one NRAS mutation in one anaplastic oligodendroglioma, two anaplastic astrocytomas (IDH wild-type in each), and one ganglioglioma. RAS-mutant gliomas were identified with various types of glioma histology. CONCLUSION: RAS mutation appears infrequent, and it is not associated with any specific histological phenotype of glioma

    Generation of Induced Pluripotent Stem Cells and Neural Stem/Progenitor Cells from Newborns with Spina Bifida Aperta

    Get PDF
    Study DesignWe established induced pluripotent stem cells (iPSCs) and neural stem/progenitor cells (NSPCs) from three newborns with spina bifida aperta (SBa) using clinically practical methods.PurposeWe aimed to develop stem cell lines derived from newborns with SBa for future therapeutic use.Overview of LiteratureSBa is a common congenital spinal cord abnormality that causes defects in neurological and urological functions. Stem cell transplantation therapies are predicted to provide beneficial effects for patients with SBa. However, the availability of appropriate cell sources is inadequate for clinical use because of their limited accessibility and expandability, as well as ethical issues.MethodsFibroblast cultures were established from small fragments of skin obtained from newborns with SBa during SBa repair surgery. The cultured cells were transfected with episomal plasmid vectors encoding reprogramming factors necessary for generating iPSCs. These cells were then differentiated into NSPCs by chemical compound treatment, and NSPCs were expanded using neurosphere technology.ResultsWe successfully generated iPSC lines from the neonatal dermal fibroblasts of three newborns with SBa. We confirmed that these lines exhibited the characteristics of human pluripotent stem cells. We successfully generated NSPCs from all SBa newborn-derived iPSCs with a combination of neural induction and neurosphere technology.ConclusionsWe successfully generated iPSCs and iPSC-NSPCs from surgical samples obtained from newborns with SBa with the goal of future clinical use in patients with SBa

    Bridging the great divide? Making sense of the human rights-CSR relationship in UK multinational companies

    Get PDF
    Human rights (HR) and corporate social responsibility (CSR) are both fields of knowledge and research that have been shaped by, and examine, the role of multi-national enterprises in society. Whilst scholars have highlighted the overlapping nature of CSR and HR, our understanding of this relationship within business practice remains vague and under-researched. To explore the interface between CSR and HR, this paper presents empirical data from a qualitative study involving 22 international businesses based in the UK. Through an analysis based on sensemaking, the paper examines how and where CSR and HR overlap, contrast and shape one another, and the role that companies’ international operations has on this relationship. The findings reveal a complex and multi-layered relationship between the two, and concludes that in contrast to management theory, companies have bridged the ‘great divide’ in varying degrees most notably in their implementation strategies

    RNA-Binding Protein Musashi1 Modulates Glioma Cell Growth through the Post-Transcriptional Regulation of Notch and PI3 Kinase/Akt Signaling Pathways

    Get PDF
    Musashi1 (MSI1) is an RNA-binding protein that plays critical roles in nervous-system development and stem-cell self-renewal. Here, we examined its role in the progression of glioma. Short hairpin RNA (shRNA)-based MSI1-knock down (KD) in glioblastoma and medulloblastoma cells resulted in a significantly lower number of self renewing colony on day 30 (a 65% reduction), compared with non-silencing shRNA-treated control cells, indicative of an inhibitory effect of MSI1-KD on tumor cell growth and survival. Immunocytochemical staining of the MSI1-KD glioblastoma cells indicated that they ectopically expressed metaphase markers. In addition, a 2.2-fold increase in the number of MSI1-KD cells in the G2/M phase was observed. Thus, MSI1-KD caused the prolongation of mitosis and reduced the cell survival, although the expression of activated Caspase-3 was unaltered. We further showed that MSI1-KD glioblastoma cells xenografted into the brains of NOD/SCID mice formed tumors that were 96.6% smaller, as measured by a bioluminescence imaging system (BLI), than non-KD cells, and the host survival was longer (49.3±6.1 days vs. 33.6±3.6 days; P<0.01). These findings and other cell biological analyses suggested that the reduction of MSI1 in glioma cells prolonged the cell cycle by inducing the accumulation of Cyclin B1. Furthermore, MSI1-KD reduced the activities of the Notch and PI3 kinase-Akt signaling pathways, through the up-regulation of Numb and PTEN, respectively. Exposure of glioma cells to chemical inhibitors of these pathways reduced the number of spheres and living cells, as did MSI1-KD. These results suggest that MSI1 increases the growth and/or survival of certain types of glioma cells by promoting the activation of both Notch and PI3 kinase/Akt signaling

    Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Get PDF
    Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes

    In vitro characterization of neurite extension using induced pluripotent stem cells derived from lissencephaly patients with TUBA1A missense mutations

    No full text
    Abstract Background Lissencephaly, or smooth brain, is a severe congenital brain malformation that is thought to be associated with impaired neuronal migration during corticogenesis. However, the exact etiology of lissencephaly in humans remains unknown. Research on congenital diseases is limited by the shortage of clinically derived resources, especially for rare pediatric diseases. The research on lissencephaly is further limited because gyration in humans is more evolved than that in model animals such as mice. To overcome these limitations, we generated induced pluripotent stem cells (iPSCs) from the umbilical cord and peripheral blood of two lissencephaly patients with different clinical severities carrying alpha tubulin (TUBA1A) missense mutations (Patient A, p.N329S; Patient B, p.R264C). Results Neural progenitor cells were generated from these iPSCs (iPSC-NPCs) using SMAD signaling inhibitors. These iPSC-NPCs expressed TUBA1A at much higher levels than undifferentiated iPSCs and, like fetal NPCs, readily differentiated into neurons. Using these lissencephaly iPSC-NPCs, we showed that the neurons derived from the iPSCs obtained from Patient A but not those obtained from Patient B showed abnormal neurite extension, which correlated with the pathological severity in the brains of the patients. Conclusion We established iPSCs derived from lissencephaly patients and successfully modeled one aspect of the pathogenesis of lissencephaly in vitro using iPSC-NPCs and iPSC-derived neurons. The iPSCs from patients with brain malformation diseases helped us understand the mechanism underlying rare diseases and human corticogenesis without the use of postmortem brains

    Dysfunction of the proteoglycan Tsukushi causes hydrocephalus through altered neurogenesis in the subventricular zone in mice

    No full text
    The lateral ventricle (LV) is flanked by the subventricular zone (SVZ), a neural stem cell (NSC) niche rich in extrinsic growth factors regulating NSC maintenance, proliferation, and neuronal differentiation. Dysregulation of the SVZ niche causes LV expansion, a condition known as hydrocephalus; however, the underlying pathological mechanisms are unclear. We show that deficiency of the proteoglycan Tsukushi (TSK) in ependymal cells at the LV surface and in the cerebrospinal fluid results in hydrocephalus with neurodevelopmental disorder-like symptoms in mice. These symptoms are accompanied by altered differentiation and survival of the NSC lineage, disrupted ependymal structure, and dysregulated Wnt signaling. Multiple TSK variants found in patients with hydrocephalus exhibit reduced physiological activity in mice in vivo and in vitro. Administration of wild-type TSK protein or Wnt antagonists, but not of hydrocephalus-related TSK variants, in the LV of TSK knockout mice prevented hydrocephalus and preserved SVZ neurogenesis. These observations suggest that TSK plays a crucial role as a niche molecule modulating the fate of SVZ NSCs and point to TSK as a candidate for the diagnosis and therapy of hydrocephalus
    corecore