255 research outputs found

    A randomized, controlled trial of everolimus-based dual immunosuppression versus standard of care in de novo kidney transplant recipients

    Get PDF
    Kidney transplant recipients receiving calcineurin inhibitor-based immunosuppression incur increased long-term risks of cancer and kidney fibrosis. Switch to mammalian target of rapamycin (mTOR) inhibitors may reduce these risks. Steroid or Cyclosporin Removal After Transplant using Everolimus (SOCRATES), a 36-month, prospective, multinational, open-label, randomized controlled trial for de novo kidney transplant recipients, assessed whether everolimus switch could enable elimination of mycophenolate plus either steroids or CNI without compromising efficacy. Patients received cyclosporin, mycophenolate and steroids for the first 14 days then everolimus with mycophenolate and CNIwithdrawal (CNI- WD); everolimus with mycophenolate and steroid withdrawal (steroid-WD); or cyclosporin, mycophenolate and steroids (control). 126 patients were randomized. The steroid WD arm was terminated prematurely because of excess discontinuations. Mean eGFR at month 12 for CNI-WD versus control was 65.1 ml/ min/1.73 m2 vs. 67.1 ml/min/1.73 m2 by ITT, which met predefined noninferiority criteria (P = 0.026). The CNI-WD group experienced a higher rate of BPAR (31% vs. control 13%, P = 0.048) and showed a trend towards higher composite treatment failure (BPAR, graft loss, death, loss to follow-up). The 12 month results from SOCRATES show noninferiority in eGFR, but a significant excess of acute rejection when everolimus was commenced at week 2 to enable a progressive withdrawal of mycophenolate and cyclosporin in kidney transplant recipients.Steven J. Chadban, Josette Marie Eris, John Kanellis, Helen Pilmore, Po Chang Lee, Soo Kun Lim, Chad Woodcock, Nicol Kurstjens, Graeme Rus

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    Sex-Specific Association of the Putative Fructose Transporter SLC2A9 Variants With Uric Acid Levels Is Modified by BMI

    Get PDF
    OBJECTIVE—High serum uric acid levels lead to gout and have been reported to be associated with an increased risk of hypertension, obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Recently, the putative fructose transporter SLC2A9 was reported to influence uric acid levels. The aim of the present study was to examine the association of four single nucleotide polymorphisms within this gene with uric acid levels and to determine whether this association is modified by obesity

    MDC1 maintains active elongation complexes of RNA polymerase II

    Get PDF
    The role of MDC1 in the DNA damage response has been extensively studied; however, its impact on other cellular processes is not well understood. Here, we describe the role of MDC1 in transcription as a regulator of RNA polymerase II (RNAPII). Depletion of MDC1 causes a genome-wide reduction in the abundance of actively engaged RNAPII elongation complexes throughout the gene body of protein-encoding genes under unperturbed conditions. Decreased engaged RNAPII subsequently alters the assembly of the spliceosome complex on chromatin, leading to changes in pre-mRNA splicing. Mechanistically, the S/TQ domain of MDC1 modulates RNAPII-mediated transcription. Upon genotoxic stress, MDC1 promotes the abundance of engaged RNAPII complexes at DNA breaks, thereby stimulating nascent transcription at the damaged sites. Of clinical relevance, cancer cells lacking MDC1 display hypersensitivity to RNAPII inhibitors. Overall, we unveil a role of MDC1 in RNAPII-mediated transcription with potential implications for cancer treatment

    Stabilization of Dicentric Translocations through Secondary Rearrangements Mediated by Multiple Mechanisms in S. cerevisiae

    Get PDF
    The gross chromosomal rearrangements (GCRs) observed in S. cerevisiae mutants with increased rates of accumulating GCRs include predicted dicentric GCRs such as translocations, chromosome fusions and isoduplications. These GCRs resemble the genome rearrangements found as mutations underlying inherited diseases as well as in the karyotypes of many cancers exhibiting ongoing genome instabilityThe structures of predicted dicentric GCRs were analyzed using multiple strategies including array-comparative genomic hybridization, pulse field gel electrophoresis, PCR amplification of predicted breakpoints and sequencing. The dicentric GCRs were found to be unstable and to have undergone secondary rearrangements to produce stable monocentric GCRs. The types of secondary rearrangements observed included: non-homologous end joining (NHEJ)-dependent intramolecular deletion of centromeres; chromosome breakage followed by NHEJ-mediated circularization or broken-end fusion to another chromosome telomere; and homologous recombination (HR)-dependent non-reciprocal translocations apparently mediated by break-induced replication. A number of these GCRs appeared to have undergone multiple bridge-fusion-breakage cycles. We also observed examples of chromosomes with extensive ongoing end decay in mec1 tlc1 mutants, suggesting that Mec1 protects chromosome ends from degradation and contributes to telomere maintenance by HR.HR between repeated sequences resulting in secondary rearrangements was the most prevalent pathway for resolution of dicentric GCRs regardless of the structure of the initial dicentric GCR, although at least three other resolution mechanisms were observed. The resolution of dicentric GCRs to stable rearranged chromosomes could in part account for the complex karyotypes seen in some cancers

    Uric Acid Is a Mediator of the Plasmodium falciparum-Induced Inflammatory Response

    Get PDF
    Malaria triggers a high inflammatory response in the host that mediates most of the associated pathologies and contributes to death. The identification of pro-inflammatory molecules derived from Plasmodium is essential to understand the mechanisms of pathogenesis and to develop targeted interventions. Uric acid derived from hypoxanthine accumulated in infected erythrocytes has been recently proposed as a mediator of inflammation in rodent malaria.We found that human erythrocytes infected with Plasmodium falciparum gradually accumulate hypoxanthine in their late stages of development. To analyze the role of hypoxanthine-derived uric acid induced by P. falciparum on the inflammatory cytokine response from human blood mononuclear cells, cultures were treated with allopurinol, to inhibit uric acid formation from hypoxanthine, or with uricase, to degrade uric acid. Both treatments significantly reduce the secretion of TNF, IL-6, IL-1beta and IL-10 from human cells.Uric acid is a major contributor of the inflammatory response triggered by P. falciparum in human peripheral blood mononuclear cells. Since the inflammatory reaction induced by P. falciparum is considered a major cause of malaria pathogenesis, identifying the mechanisms used by the parasite to induce the host inflammatory response is essential to develop urgently needed therapies against this disease

    The Axonal Guidance Receptor Neogenin Promotes Acute Inflammation

    Get PDF
    Neuronal guidance proteins (NGP) were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1−/−) demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1−/− to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system

    Elevated Serum Uric Acid Is Associated with High Circulating Inflammatory Cytokines in the Population-Based Colaus Study

    Get PDF
    BACKGROUND: The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor- alpha (TNF-alpha) and C-reactive protein (CRP). METHODS AND FINDINGS: This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-alpha, IL-1beta and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-alpha, CRP and IL-1beta were 355 micromol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 micromol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-alpha and CRP and negatively with IL-1beta (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P<0.05). In multivariable analyses, SUA was associated positively with CRP (beta coefficient +/- SE = 0.35+/-0.02, P<0.001), TNF-alpha (0.08+/-0.02, P<0.001) and IL-6 (0.10+/-0.03, P<0.001), and negatively with IL-1beta (-0.07+/-0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated. CONCLUSIONS: SUA was associated positively with IL-6, CRP and TNF-alpha and negatively with IL-1beta, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation

    Down-Regulation of Replication Factor C-40 (RFC40) Causes Chromosomal Missegregation in Neonatal and Hypertrophic Adult Rat Cardiac Myocytes

    Get PDF
    BACKGROUND: Adult mammalian cardiac myocytes are generally assumed to be terminally differentiated; nonetheless, a small fraction of cardiac myocytes have been shown to replicate during ventricular remodeling. However, the expression of Replication Factor C (RFC; RFC140/40/38/37/36) and DNA polymerase δ (Pol δ) proteins, which are required for DNA synthesis and cell proliferation, in the adult normal and hypertrophied hearts has been rarely studied. METHODS: We performed qRT-PCR and Western blot analysis to determine the levels of RFC and Pol δ message and proteins in the adult normal cardiac myocytes and cardiac fibroblasts, as well as in adult normal and pulmonary arterial hypertension induced right ventricular hypertrophied hearts. Immunohistochemical analyses were performed to determine the localization of the re-expressed DNA replication and cell cycle proteins in adult normal (control) and hypertrophied right ventricle. We determined right ventricular cardiac myocyte polyploidy and chromosomal missegregation/aneuploidy using Fluorescent in situ hybridization (FISH) for rat chromosome 12. RESULTS: RFC40-mRNA and protein was undetectable, whereas Pol δ message was detectable in the cardiac myocytes isolated from control adult hearts. Although RFC40 and Pol δ message and protein significantly increased in hypertrophied hearts as compared to the control hearts; however, this increase was marginal as compared to the fetal hearts. Immunohistochemical analyses revealed that in addition to RFC40, proliferative and mitotic markers such as cyclin A, phospho-Aurora A/B/C kinase and phospho-histone 3 were also re-expressed/up-regulated simultaneously in the cardiac myocytes. Interestingly, FISH analyses demonstrated cardiac myocytes polyploidy and chromosomal missegregation/aneuploidy in these hearts. Knock-down of endogenous RFC40 caused chromosomal missegregation/aneuploidy and decrease in the rat neonatal cardiac myocyte numbers. CONCLUSION: Our novel findings suggest that transcription of RFC40 is suppressed in the normal adult cardiac myocytes and its insufficient re-expression may be responsible for causing chromosomal missegregation/aneuploidy and in cardiac myocytes during right ventricular hypertrophy

    Rapid Analysis of Saccharomyces cerevisiae Genome Rearrangements by Multiplex Ligation–Dependent Probe Amplification

    Get PDF
    Aneuploidy and gross chromosomal rearrangements (GCRs) can lead to genetic diseases and the development of cancer. We previously demonstrated that introduction of the repetitive retrotransposon Ty912 onto a nonessential chromosome arm of Saccharomyces cerevisiae led to increased genome instability predominantly due to increased rates of formation of monocentric nonreciprocal translocations. In this study, we adapted Multiplex Ligation–dependent Probe Amplification (MLPA) to analyze a large numbers of these GCRs. Using MLPA, we found that the distribution of translocations induced by the presence of Ty912 in a wild-type strain was nonrandom and that the majority of these translocations were mediated by only six translocation targets on four different chromosomes, even though there were 254 potential Ty-related translocation targets in the S. cerevisiae genome. While the majority of Ty912-mediated translocations resulted from RAD52-dependent recombination, we observed a number of nonreciprocal translocations mediated by RAD52-independent recombination between Ty1 elements. The formation of these RAD52-independent translocations did not require the Rad51 or Rad59 homologous pairing proteins or the Rad1–Rad10 endonuclease complex that processes branched DNAs during recombination. Finally, we found that defects in ASF1-RTT109–dependent acetylation of histone H3 lysine residue 56 (H3K56) resulted in increased accumulation of both GCRs and whole-chromosome duplications, and resulted in aneuploidy that tended to occur simultaneously with GCRs. Overall, we found that MLPA is a versatile technique for the rapid analysis of GCRs and can facilitate the genetic analysis of the pathways that prevent and promote GCRs and aneuploidy
    corecore