132 research outputs found

    Revisiting causality, coalgebraically

    Get PDF
    In this paper we recast the classical Darondeau–Degano’s causal semantics of concurrency in a coalgebraic setting, where we derive a compact model. Our construction is inspired by the one of Montanari and Pistore yielding causal automata, but we show that it is instance of an existing categorical framework for modeling the semantics of nominal calculi, whose relevance is further demonstrated. The key idea is to represent events as names, and the occurrence of a new event as name generation. We model causal semantics as a coalgebra over a presheaf, along the lines of the Fiore–Turi approach to the semantics of nominal calculi. More specifically, we take a suitable category of finite posets, representing causal relations over events, and we equip it with an endofunctor that allocates new events and relates them to their causes. Presheaves over this category express the relationship between processes and causal relations among the processes’ events. We use the allocation operator to define a category of well-behaved coalgebras: it models the occurrence of a new event along each transition. Then we turn the causal transition relation into a coalgebra in this category, where labels only exhibit maximal events with respect to the source states’ poset, and we show that its bisimilarity is essentially Darondeau–Degano’s strong causal bisimilarity. This coalgebra is still infinite-state, but we exploit the equivalence between coalgebras over a class of presheaves and History Dependent automata to derive a compact representation, where states only retain the poset of the most recent events for each atomic subprocess, and are isomorphic up to order-preserving permutations. Remarkably, this reduction of states is automatically performed along the equivalence

    Depletion of B2 but Not B1a B Cells in BAFF Receptor-Deficient ApoE−/− Mice Attenuates Atherosclerosis by Potently Ameliorating Arterial Inflammation

    Get PDF
    We have recently identified conventional B2 cells as atherogenic and B1a cells as atheroprotective in hypercholesterolemic ApoE−/− mice. Here, we examined the development of atherosclerosis in BAFF-R deficient ApoE−/− mice because B2 cells but not B1a cells are selectively depleted in BAFF-R deficient mice. We fed BAFF-R−/− ApoE−/− (BaffR.ApoE DKO) and BAFF-R+/+ApoE−/− (ApoE KO) mice a high fat diet (HFD) for 8-weeks. B2 cells were significantly reduced by 82%, 81%, 94%, 72% in blood, peritoneal fluid, spleen and peripheral lymph nodes respectively; while B1a cells and non-B lymphocytes were unaffected. Aortic atherosclerotic lesions assessed by oil red-O stained-lipid accumulation and CD68+ macrophage accumulation were decreased by 44% and 50% respectively. B cells were absent in atherosclerotic lesions of BaffR.ApoE DKO mice as were IgG1 and IgG2a immunoglobulins produced by B2 cells, despite low but measurable numbers of B2 cells and IgG1 and IgG2a immunoglobulin concentrations in plasma. Plasma IgM and IgM deposits in atherosclerotic lesions were also reduced. BAFF-R deficiency in ApoE−/− mice was also associated with a reduced expression of VCAM-1 and fewer macrophages, dendritic cells, CD4+ and CD8+ T cell infiltrates and PCNA+ cells in lesions. The expression of proinflammatory cytokines, TNF-α, IL1-β and proinflammatory chemokine MCP-1 was also reduced. Body weight and plasma cholesterols were unaffected in BaffR.ApoE DKO mice. Our data indicate that B2 cells are important contributors to the development of atherosclerosis and that targeting the BAFF-R to specifically reduce atherogenic B2 cell numbers while preserving atheroprotective B1a cell numbers may be a potential therapeutic strategy to reduce atherosclerosis by potently reducing arterial inflammation

    On XML integrity constraints in the presence of DTDs

    Get PDF
    The paper investigates XML document specifications with DTDs and integrity constraints, such as keys and foreign keys. We study the consistency problem of checking whether a given specification is meaningful: that is, whether there exists an XML document that both conforms to the DTD and satisfies the constraints. We show that DTDs interact with constraints in a highly intricate way and as a result, the consistency problem in general is undecidable. When it comes to unary keys and foreign keys, the consistency problem is shown to be NP-complete. This is done by coding DTDs and integrity constraints with linear constraints on the integers. We consider the variations of the problem (by both restricting and enlarging the class of constraints), and identify a number of tractable cases, as well as a number of additional NP-complete ones. By incorporating negations of constraints, we establish complexity bounds on the implication problem, which is shown to be coNP-complete for unary keys and foreign keys.
    • …
    corecore