28 research outputs found

    Active Initialization Experiment of Superconducting Qubit Using Quantum-circuit Refrigerator

    Full text link
    The initialization of superconducting qubits is one of the essential techniques for the realization of quantum computation. In previous research, initialization above 99\% fidelity has been achieved at 280 ns. Here, we demonstrate the rapid initialization of a superconducting qubit with a quantum-circuit refrigerator (QCR). Photon-assisted tunneling of quasiparticles in the QCR can temporally increase the relaxation time of photons inside the resonator and helps release energy from the qubit to the environment. Experiments using this protocol have shown that 99\% of initialization time is reduced to 180 ns. This initialization time depends strongly on the relaxation rate of the resonator, and faster initialization is possible by reducing the resistance of the QCR, which limits the ON/OFF ratio, and by strengthening the coupling between the QCR and the resonator

    Structural changes induced by electric currents in a single crystal of Pr2_2CuO4_4

    Full text link
    We demonstrate a novel approach to the structural and electronic property modification of perovskites, focusing on Pr2_2CuO4_4, an undoped parent compound of a class of electron-doped copper-oxide superconductors. Currents were passed parallel or perpendicular to the copper-oxygen layers with the voltage ramped up until a rapid drop in the resistivity was achieved, a process referred to as "flash". The current was then further increased tenfold in current-control mode. This state was quenched by immersion into liquid nitrogen. Flash can drive many compounds into different atomic structures with new properties, whereas the quench freezes them into a long-lived state. Single-crystal neutron diffraction of as-grown and modified Pr2_2CuO4_4 revealed a 10\sqrt{10}x10\sqrt{10} superlattice due to oxygen-vacancy order. The diffraction peak intensities of the superlattice of the modified sample were significantly enhanced relative to the pristine sample. Raman-active phonons in the modified sample were considerably sharper. Measurements of electrical resistivity, magnetization and two-magnon Raman scattering indicate that the modification affected only the Pr-O layers, but not the Cu-O planes. These results point to enhanced oxygen-vacancy order in the modified samples well beyond what can be achieved without passing electrical current. Our work opens a new avenue toward electric field/quench control of structure and properties of layered perovskite oxides

    On-Demand Single-Electron Source via Single-Cycle Acoustic Pulses

    Full text link
    Surface acoustic waves (SAWs) are a reliable solution to transport single electrons with precision in piezoelectric semiconductor devices. Recently, highly efficient single-electron transport with a strongly compressed single-cycle acoustic pulse has been demonstrated. This approach, however, requires surface gates constituting the quantum dots, their wiring, and multiple gate movements to load and unload the electrons, which is very time-consuming. Here, on the contrary, we employ such a single-cycle acoustic pulse in a much simpler way - without any quantum dot at the entrance or exit of a transport channel - to perform single-electron transport between distant electron reservoirs. We observe the transport of a solitary electron in a single-cycle acoustic pulse via the appearance of the quantized acousto-electric current. The simplicity of our approach allows for on-demand electron emission with arbitrary delays on a ns time scale. We anticipate that enhanced synthesis of the SAWs will facilitate electron-quantum-optics experiments with multiple electron flying qubits

    Generation of a single-cycle acoustic pulse: a scalable solution for transport in single-electron circuits

    Full text link
    The synthesis of single-cycle, compressed optical and microwave pulses sparked novel areas of fundamental research. In the field of acoustics, however, such a generation has not been introduced yet. For numerous applications, the large spatial extent of surface acoustic waves (SAW) causes unwanted perturbations and limits the accuracy of physical manipulations. Particularly, this restriction applies to SAW-driven quantum experiments with single flying electrons, where extra modulation renders the exact position of the transported electron ambiguous and leads to undesired spin mixing. Here, we address this challenge by demonstrating single-shot chirp synthesis of a strongly compressed acoustic pulse. Employing this solitary SAW pulse to transport a single electron between distant quantum dots with an efficiency exceeding 99%, we show that chirp synthesis is competitive with regular transduction approaches. Performing a time-resolved investigation of the SAW-driven sending process, we outline the potential of the chirped SAW pulse to synchronize single-electron transport from many quantum-dot sources. By superimposing multiple pulses, we further point out the capability of chirp synthesis to generate arbitrary acoustic waveforms tailorable to a variety of (opto)nanomechanical applications. Our results shift the paradigm of compressed pulses to the field of acoustic phonons and pave the way for a SAW-driven platform of single-electron transport that is precise, synchronized, and scalable.Comment: To be published in Physical Review

    Interplay of the Inverse Proximity Effect and Magnetic Field in Out-of-Equilibrium Single-Electron Devices

    Get PDF
    We show that a weak external magnetic field affects significantly nonequilibrium quasiparticle (QP) distributions under the conditions of the inverse proximity effect, using the single-electron hybrid turnstile as a generic example. Inverse proximity suppresses the superconducting gap in superconducting leads in the vicinity of turnstile junctions, thus, trapping hot QPs in this region. An external magnetic field creates additional QP traps in the leads in the form of vortices or regions with a reduced superconducting gap resulting in the release of QPs away from the junctions. We present clear experimental evidence of the interplay of the inverse proximity effect and magnetic field revealing itself in the superconducting gap enhancement and significant improvement of the turnstile characteristics. The observed interplay and its theoretical explanation in the context of QP overheating are important for various superconducting and hybrid nanoelectronic devices, which find applications in quantum computation, photon detection, and quantum metrology
    corecore